ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey on the unconditional convergence and the invertibility of multipliers with implementation

66   0   0.0 ( 0 )
 نشر من قبل Diana Stoeva
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper presents a survey over frame multipliers and related concepts. In particular, it includes a short motivation of why multipliers are of interest to consider, a review as well as extension of recent results, devoted to the unconditional convergence of multipliers, sufficient and/or necessary conditions for the invertibility of multipliers, and representation of the inverse via Neumann-like series and via multipliers with particular parameters. Multipliers for frames with specific structure, namely, Gabor and wavelet multipliers, are also considered. Some of the results for the representation of the inverse multiplier are implemented in Matlab codes and the algorithms are described.



قيم البحث

اقرأ أيضاً

167 - D. Stoeva , P. Balazs 2009
In the present paper the unconditional convergence and the invertibility of multipliers is investigated. Multipliers are operators created by (frame-like) analysis, multiplication by a fixed symbol, and resynthesis. Sufficient and/or necessary condit ions for unconditional convergence and invertibility are determined depending on the properties of the analysis and synthesis sequences, as well as the symbol. Examples which show that the given assertions cover different classes of multipliers are given. If a multiplier is invertible, a formula for the inverse operator is determined. The case when one of the sequences is a Riesz basis is completely characterized.
135 - Daniel Jupiter 2005
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose rest rictions to lower dimensional polydiscs lie in the corresponding Dirichet type spaces. We see that such functions need not be in the Dirichlet type space of the whole polydisc. Similar observations are made regarding multipliers.
138 - Rosario Corso 2021
A dual frames multiplier is an operator consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames in a Hilbert space, respectively. In this paper we investigate the spectra of som e dual frames multipliers giving, in particular, conditions to be at most countable. The contribution extends the results available in literature about the spectra of Bessel multipliers with symbol decaying to zero and of multipliers of dual Riesz bases.
We characterize the set of all pointwise multipliers of the Besov spaces $B^s_{p,q}(R)$ under the restrictions $0 < p,q le infty$ and $s>d/p$.
We study the alternating algorithm for the computation of the metric projection onto the closed sum of two closed subspaces in uniformly convex and uniformly smooth Banach spaces. For Banach spaces which are convex and smooth of power type, we exhibi t a condition which implies linear convergence of this method. We show these convergence results for iterates of Bregman projections onto closed linear subspaces. Using an intimate connection between the metric projection onto a closed linear subspace and the Bregman projection onto its annihilator, we deduce the convergence rate results for the alternating algorithm from the corresponding results for the iterated Bregman projection method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا