ﻻ يوجد ملخص باللغة العربية
We report a measurement of the lifetime of the cesium $7s,^2S_{1/2}$ state using time-correlated single-photon counting spectroscopy in a vapor cell. We excite the atoms using a Doppler-free two-photon transition from the $6s,^2S_{1/2}$ ground state, and detect the 1.47$mu$m photons from the spontaneous decay of the $7s,^2S_{1/2}$ to the $6p,^2P_{3/2}$ state. We use a gated single photon detector in an asynchronous mode, allowing us to capture the fluorescence profile for a window much larger than the detector gate length. Analysis of the exponential decay of the photon count yields a $7s,^2S_{1/2}$ lifetime of 48.28$pm$0.07ns, an uncertainty of 0.14%. These measurements provide sensitive tests of theoretical models of the Cs atom, which play a central role in parity violation measurements.
We report a measurement of the ratio of electric dipole transition matrix elements of cesium for the $6p,^2P_{1/2} rightarrow 7s,^2S_{1/2}$ and $6p,^2P_{3/2} rightarrow 7s,^2S_{1/2}$ transitions. We determine this ratio of matrix elements through com
Using recent high-precision measurements of electric dipole matrix elements of atomic cesium, we make an improved determination of the scalar ($alpha$) and vector ($beta$) polarizabilities of the cesium $6s ^2S_{1/2} rightarrow 7s ^2S_{1/2} $ trans
We report measurements of the Stark shift of the cesium $6s : ^2S_{3/2} rightarrow 7p : ^2P_{3/2} $ and the $6s : ^2S_{1/2} rightarrow 7p : ^2P_{1/2} $ transitions at $lambda = 456$ nm and 459 nm, respectively, in an atomic beam. From these, we deter
We measure the lifetime of the cesium $5^2D_{5/2}$ state using a time-resolved single-photon-counting method. We excite atoms in a hot vapor cell via an electric quadrupole transition at a wavelength of $685,mathrm{nm}$ and record the fluorescence of
We report measurements of the electric dipole matrix elements of the $^{133}$Cs $ $ $6s,^2S_{1/2} rightarrow 7p,^2P_{1/2}$ and $6s,^2S_{1/2} rightarrow 7p,^2P_{3/2}$ transitions. Each of these determinations is based on direct, precise comparisons of