ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporally Identity-Aware SSD with Attentional LSTM

58   0   0.0 ( 0 )
 نشر من قبل Xingyu Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Temporal object detection has attracted significant attention, but most popular detection methods cannot leverage rich temporal information in videos. Very recently, many algorithms have been developed for video detection task, yet very few approaches can achieve emph{real-time online} object detection in videos. In this paper, based on attention mechanism and convolutional long short-term memory (ConvLSTM), we propose a temporal single-shot detector (TSSD) for real-world detection. Distinct from previous methods, we take aim at temporally integrating pyramidal feature hierarchy using ConvLSTM, and design a novel structure including a low-level temporal unit as well as a high-level one (LH-TU) for multi-scale feature maps. Moreover, we develop a creative temporal analysis unit, namely, attentional ConvLSTM (AC-LSTM), in which a temporal attention mechanism is specially tailored for background suppression and scale suppression while a ConvLSTM integrates attention-aware features across time. An association loss and a multi-step training are designed for temporal coherence. Besides, an online tubelet analysis (OTA) is exploited for identification. Our framework is evaluated on ImageNet VID dataset and 2DMOT15 dataset. Extensive comparisons on the detection and tracking capability validate the superiority of the proposed approach. Consequently, the developed TSSD-OTA achieves a fast speed and an overall competitive performance in terms of detection and tracking. Finally, a real-world maneuver is conducted for underwater object grasping. The source code is publicly available at https://github.com/SeanChenxy/TSSD-OTA.


قيم البحث

اقرأ أيضاً

Standard video and movie description tasks abstract away from person identities, thus failing to link identities across sentences. We propose a multi-sentence Identity-Aware Video Description task, which overcomes this limitation and requires to re-i dentify persons locally within a set of consecutive clips. We introduce an auxiliary task of Fill-in the Identity, that aims to predict persons IDs consistently within a set of clips, when the video descriptions are given. Our proposed approach to this task leverages a Transformer architecture allowing for coherent joint prediction of multiple IDs. One of the key components is a gender-aware textual representation as well an additional gender prediction objective in the main model. This auxiliary task allows us to propose a two-stage approach to Identity-Aware Video Description. We first generate multi-sentence video descriptions, and then apply our Fill-in the Identity model to establish links between the predicted person entities. To be able to tackle both tasks, we augment the Large Scale Movie Description Challenge (LSMDC) benchmark with new annotations suited for our problem statement. Experiments show that our proposed Fill-in the Identity model is superior to several baselines and recent works, and allows us to generate descriptions with locally re-identified people.
85 - Bing Zha , Alper Yilmaz 2020
In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by humans ability to both be aware of dista nce and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable path in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment and can generate trajectory with metric information. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and simply use an affordable sensor that generates motion trajectory and 3) do not need initial position. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.
Existing single-stage detectors for locating objects in point clouds often treat object localization and category classification as separate tasks, so the localization accuracy and classification confidence may not well align. To address this issue, we present a new single-stage detector named the Confident IoU-Aware Single-Stage object Detector (CIA-SSD). First, we design the lightweight Spatial-Semantic Feature Aggregation module to adaptively fuse high-level abstract semantic features and low-level spatial features for accurate predictions of bounding boxes and classification confidence. Also, the predicted confidence is further rectified with our designed IoU-aware confidence rectification module to make the confidence more consistent with the localization accuracy. Based on the rectified confidence, we further formulate the Distance-variant IoU-weighted NMS to obtain smoother regressions and avoid redundant predictions. We experiment CIA-SSD on 3D car detection in the KITTI test set and show that it attains top performance in terms of the official ranking metric (moderate AP 80.28%) and above 32 FPS inference speed, outperforming all prior single-stage detectors. The code is available at https://github.com/Vegeta2020/CIA-SSD.
Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion both accurately and with minimal delay. Understanding the uncertainty of the prediction is also crucial. Most existing approaches howe ver can only estimate uncertainty through repeated sampling of generative models. Additionally, most current predictive models are trained on datasets that assume complete observability of the crowd using an aerial view. These are generally not representative of real-world usage from a vehicle perspective, and can lead to the underestimation of uncertainty bounds when the on-board sensors are occluded. Inspired by prior work in motion prediction using spatio-temporal graphs, we propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph. Our model can be trained to either output a probabilistic distribution or faster deterministic prediction, demonstrating applicability to autonomous vehicle use cases where either speed or accuracy with uncertainty bounds are required. To further improve the training of predictive models, we propose an automatically labelled pedestrian dataset collected from an intelligent vehicle platform representative of real-world use. Through experiments on a number of datasets, we show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
At the heart of all automated driving systems is the ability to sense the surroundings, e.g., through semantic segmentation of LiDAR sequences, which experienced a remarkable progress due to the release of large datasets such as SemanticKITTI and nuS cenes-LidarSeg. While most previous works focus on sparse segmentation of the LiDAR input, dense output masks provide self-driving cars with almost complete environment information. In this paper, we introduce MASS - a Multi-Attentional Semantic Segmentation model specifically built for dense top-view understanding of the driving scenes. Our framework operates on pillar- and occupancy features and comprises three attention-based building blocks: (1) a keypoint-driven graph attention, (2) an LSTM-based attention computed from a vector embedding of the spatial input, and (3) a pillar-based attention, resulting in a dense 360-degree segmentation mask. With extensive experiments on both, SemanticKITTI and nuScenes-LidarSeg, we quantitatively demonstrate the effectiveness of our model, outperforming the state of the art by 19.0% on SemanticKITTI and reaching 32.7% in mIoU on nuScenes-LidarSeg, where MASS is the first work addressing the dense segmentation task. Furthermore, our multi-attention model is shown to be very effective for 3D object detection validated on the KITTI-3D dataset, showcasing its high generalizability to other tasks related to 3D vision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا