ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the role of a physical watermarking signal in quickest detection of a deception attack in a scalar linear control system where the sensor measurements can be replaced by an arbitrary stationary signal generated by an attacker. By adding a random watermarking signal to the control action, the controller designs a sequential test based on a Cumulative Sum (CUSUM) method that accumulates the log-likelihood ratio of the joint distribution of the residue and the watermarking signal (under attack) and the joint distribution of the innovations and the watermarking signal under no attack. As the average detection delay in such tests is asymptotically (as the false alarm rate goes to zero) upper bounded by a quantity inversely proportional to the Kullback-Leibler divergence(KLD) measure between the two joint distributions mentioned above, we analyze the effect of the watermarking signal variance on the above KLD. We also analyze the increase in the LQG control cost due to the watermarking signal, and show that there is a tradeoff between quick detection of attacks and the penalty in the control cost. It is shown that by considering a sequential detection test based on the joint distributions of residue/innovations and the watermarking signal, as opposed to the distributions of the residue/innovations only, we can achieve a higher KLD, thus resulting in a reduced average detection delay. Numerical results are provided to support our claims.
In this paper, we propose and analyze an attack detection scheme for securing the physical layer of a networked control system against attacks where the adversary replaces the true observations with stationary false data. An independent and identical
Networked robotic systems, such as connected vehicle platoons, can improve the safety and efficiency of transportation networks by allowing for high-speed coordination. To enable such coordination, these systems rely on networked communications. This
We here investigate secure control of networked control systems developing a new dynamic watermarking (DW) scheme. Firstly, the weaknesses of the conventional DW scheme are revealed, and the tradeoff between the effectiveness of false data injection
One of the most studied forms of attacks on the cyber-physical systems is the replay attack. The statistical similarities of the replay signal and the true observations make the replay attack difficult to detect. In this paper, we have addressed the
Closed-loop control systems employ continuous sensing and actuation to maintain controlled variables within preset bounds and achieve the desired system output. Intentional disturbances in the system, such as in the case of cyberattacks, can compromi