ترغب بنشر مسار تعليمي؟ اضغط هنا

GOODS-ALMA: 1.1 mm galaxy survey - I. Source catalogue and optically dark galaxies

80   0   0.0 ( 0 )
 نشر من قبل Maximilien Franco
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 69 arcmin$^2$ ALMA survey at 1.1mm, GOODS-ALMA, matching the deepest HST-WFC3 H-band part of the GOODS-South field. We taper the 024 original image with a homogeneous and circular synthesized beam of 060 to reduce the number of independent beams - thus reducing the number of purely statistical spurious detections - and optimize the sensitivity to point sources. We extract a catalogue of galaxies purely selected by ALMA and identify sources with and without HST counterparts down to a 5$sigma$ limiting depth of H=28.2 AB (HST/WFC3 F160W). ALMA detects 20 sources brighter than 0.7 mJy in the 060 tapered mosaic (rms sensitivity =0.18 mJy/beam) with a purity greater than 80%. Among these detections, we identify three sources with no HST nor Spitzer-IRAC counterpart, consistent with the expected number of spurious galaxies from the analysis of the inverted image; their definitive status will require additional investigation. An additional three sources with HST counterparts are detected either at high significance in the higher resolution map, or with different detection-algorithm parameters ensuring a purity greater than 80%. Hence we identify in total 20 robust detections. Our wide contiguous survey allows us to push further in redshift the blind detection of massive galaxies with ALMA with a median redshift of $z$=2.92 and a median stellar mass of M$_{star}$ = 1.1 $times 10^{11}$M$_odot$. Our sample includes 20% HST-dark galaxies (4 out of 20), all detected in the mid-infrared with IRAC. The near-infrared based photometric redshifts of two of them $zsim$4.3 and 4.8) suggest that these sources have redshifts $z$>4. At least 40% of the ALMA sources host an X-ray AGN, compared to 14% for other galaxies of similar mass and redshift. The wide area of our ALMA survey provides lower values at the bright end of number counts than single-dish telescopes

قيم البحث

اقرأ أيضاً

Sub/millimiter observations of dusty star-forming galaxies with ALMA have shown that the dust continuum emission occurs generally in compact regions smaller than the stellar distribution. However, it remains to be understood how systematic these find ings are, as they often lack of homogeneity in the sample selection, target discontinuous areas with inhomogeneous sensitivities, and suffer from modest $uv$-coverage coming from single array configurations. GOODS-ALMA is a 1.1 mm galaxy survey over a continuous area of 72.42 arcmin$^2$ at a homogeneous sensitivity. In this version 2.0, we present a new low-resolution dataset and its combination with the previous high-resolution dataset from Franco et al. (2018), improving the $uv$-coverage and sensitivity reaching an average of $sigma = 68.4$ $mu$Jy beam$^{-1}$. A total of 88 galaxies are detected in a blind search (compared to 35 in the high-resolution dataset alone), 50% at $rm{S/N_{peak}} geq 5$ and 50% at $3.5 leq rm{S/N_{peak}} leq 5$ aided by priors. Among them, 13/88 are optically dark/faint sources ($H$ or $K$-band dropouts). The sample dust continuum sizes at 1.1 mm are generally compact, with a median effective radius of $R_{rm{e}} = 010 pm 005$ (physical size of $R_{rm{e}} = 0.73 pm 0.29$ kpc, at the redshift of each source). Dust continuum sizes evolve with redshift and stellar mass resembling the trends of the stellar sizes measured at optical wavelengths, albeit a lower normalization compared to those of late-type galaxies. We conclude that for sources with flux densities $S_{rm{1.1mm}} > 1$ mJy compact dust continuum emission at 1.1 mm prevails, and sizes as extended as typical star-forming stellar disks are rare. $S_{rm{1.1mm}} < 1$ mJy sources appear slightly more extended at 1.1 mm, although still generally compact below the sizes of typical star-forming stellar disks.
We have conducted a deep and uniform 1.1 mm survey of the GOODS-N field with AzTEC on the James Clerk Maxwell Telescope (JCMT). Here we present the first results from this survey including maps, the source catalogue, and 1.1 mm number-counts. The res ults presented here were obtained from a 245 sq-arcmin region with near uniform coverage to a depth of 0.96-1.16 mJy/beam. Our robust catalogue contains 28 source candidates detected with S/N >= 3.75, only 1-2 of which are expected to be spurious detections. Of these source candidates, 8 are also detected by SCUBA at 850 um in regions where there is good overlap between the two surveys. The major advantage of our survey over that with SCUBA is the uniformity of coverage. We calculate number counts using two different techniques: the first using a frequentist parameter estimation, and the second using a Bayesian method. The two sets of results are in good agreement. We find that the 1.1 mm differential number counts are well described in the 2-6 mJy range by the functional form dN/dS = N (S/S) exp(-S/S) with fitted parameters S = 1.25 +/-0.38 mJy and dN/dS = 300 +/- 90 per mJy per sq-deg at 3 mJy.
98 - L. Zhou , D. Elbaz , M. Franco 2020
In this paper we study the properties of the six optically dark galaxies detected in the 69 arcmin^2 GOODS-ALMA 1.1mm continuum survey. While none of them are listed in the deepest H-band based CANDELS catalog in the GOODS-South field down to H=28.16 AB, we were able to de-blend two of them from their bright neighbor and measure an $H$-band flux for them. We note that AGS4 and AGS15 have H=25.23, 27.11AB respectively. Their extreme proximity (0.50, 0.27) to a bright optical source and their extreme faintness prevented them from being included in the H-band catalog. We present the spectroscopic scan follow-up of five of the six sources with ALMA band 4. All are detected in the 2mm continuum with signal-to-noise ratios higher than eight. One emission line is detected in AGS4 ( u_{obs} =151.44GHz with a S/N=8.58) and AGS17 ( u_{obs} =154.78GHz with a S/N=10.23), which we interpret in both cases as being due to the CO(6-5) line at z^{AGS4}_{spec}=3.556 and z^{AGS4}_{spec}=3.467, respectively. These redshifts match both the probability distribution of the photometric redshifts derived from the UV to near-infrared spectral energy distributions (SEDs) and the far-infrared SEDs for typical dust temperatures of galaxies at these redshifts. We present evidence that nearly 70% (4/6 of galaxies) of the optically dark galaxies belong to the same overdensity of galaxies at z~3.5. overdensity The most massive one, AGS24 (M_{star} = 10^{11.32^{+0.02}_{-0.19}} M_{odot}), is the most massive galaxy without an active galactic nucleus (AGN) at $z$,>,3 in the GOODS-ALMA field. It falls in the very center of the peak of the galaxy surface density, which suggests that the surrounding overdensity is a proto-cluster in the process of virialization and that AGS24 is the candidate progenitor of the future brightest cluster galaxy (BCG).
We report 1.1 mm number counts revealed with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey Field (SXDF). The advent of ALMA enables us to reveal millimeter-wavelength number counts down to the faint end without source confusion. However, previous studies are based on the ensemble of serendipitously-detected sources in fields originally targeting different sources and could be biased due to the clustering of sources around the targets. We derive number counts in the flux range of 0.2-2 mJy by using 23 (>=4sigma) sources detected in a continuous 2.0 arcmin$^2$ area of the SXDF. The number counts are consistent with previous results within errors, suggesting that the counts derived from serendipitously-detected sources are not significantly biased, although there could be field-to-field variation due to the small survey area. By using the best-fit function of the number counts, we find that ~40% of the extragalactic background light at 1.1 mm is resolved at S(1.1mm) > 0.2 mJy.
Dusty star-forming galaxies are among the most prodigious systems at high redshift (z>1), characterized by high star formation rates and huge dust reservoirs. The bright end of this population has been well characterized in recent years, but consider able uncertainties remain for fainter dusty star-forming galaxies, which are responsible for the bulk of star formation at high redshift and thus play a key role in galaxy growth and evolution. In this first paper of our series, we describe our methods for finding high redshift faint dusty galaxies using millimeter observations with ALMA. We obtained ALMA 1.1 mm mosaic images for three strong-lensing galaxy clusters from the Frontier Fields survey. The 2x2 mosaics overlap with the deep HST WFC3/IR footprints and encompass the high magnification regions of each cluster. The combination of extremely high ALMA sensitivity and the magnification power of these clusters allows us to systematically probe the sub-mJy population of dusty star-forming galaxies over a large surveyed area. We present a description of the reduction and analysis of the ALMA continuum observations for the galaxy clusters Abell 2744 (z=0.308), MACSJ0416.1-2403 (z=0.396) and MACSJ1149.5+2223 (z=0.543), for which we reach observed rms sensitivities of 55, 59 and 71 $mu$Jy beam$^{-1}$ respectively. We detect 12 dusty star-forming galaxies at S/N>5.0 across the three clusters, all of them presenting coincidence with NIR detected counterparts in the HST images. None of the sources fall close to the lensing caustics, thus they are not strongly lensed. The observed 1.1 mm flux densities for the total sample of galaxies range from 0.41 to 2.82 mJy, with observed effective radii spanning <0.05 to 0.37$pm$0.21. The lensing-corrected sizes of the detected sources appear to be in the same range as those measured in brighter samples, albeit with possibly larger dispersion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا