ﻻ يوجد ملخص باللغة العربية
We run numerical simulations to study the accretion of gas and dust grains onto gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete onto the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar System and exosolar giant planets. To account for observations, however, as much as ~30-50% of the dust mass should be in the form of large grains.
Observations of the population of cold Jupiter planets ($r>$1 AU) show that nearly all of these planets orbit their host star on eccentric orbits. For planets up to a few Jupiter masses, eccentric orbits are thought to be the outcome of planet-planet
In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth m
We propose a pebble-driven planet formation scenario to form giant planets with high multiplicity and large orbital distances in the early gas disk phase. We perform N-body simulations to investigate the growth and migration of low-mass protoplanets
The amount of dust present in circumstellar disks is expected to steadily decrease with age due to the growth from micron-sized particles to planetesimals and planets. Mature circumstellar disks, however, can be observed to contain significant amount
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites - formed by melting of dust aggregate pebbles or in impacts between planetesimals - have similar sizes. The role of pebble acc