ﻻ يوجد ملخص باللغة العربية
This paper describes our experiences creating Tornado: a practical and efficient heterogeneous programming framework for managed languages. The novel aspect of Tornado is that it turns the programming of heterogeneous systems from an activity predominantly based on a priori knowledge into one based on a posteriori knowledge. Alternatively put, it simply means developers do not need to overcomplicate their code by catering for all possible eventualities. Instead, Tornado provides the ability to specialize each application for a specific system in situ which avoids the need for it to be pre-configured by the developer. To enable this, Tornado employs a sophisticated runtime system that can dynamically configure all aspects of the application - from selecting which parallelization scheme to apply to specifying which accelerators to use. By using this ability, the end-user, and not the developer, can transparently make use of any available multi-/many-core processor or hardware accelerator. To showcase the impact of Tornado, we implement a real-world computer vision application and deploy it across nine accelerators without having to modify the source code or even explicitly re-compile the application. Using dynamic configuration, we show that our implementation can achieve up to 124 frames per second (FPS) - up to 166x speedup over the reference implementation. Finally, our implementation is always within 21% of a hand-written OpenCL version but avoids much of the programming tedium.
Specifying the semantics of a programming language formally can have many benefits. However, it can also require a huge effort. The effort can be significantly reduced by translating language syntax to so-called fundamental constructs (funcons). A tr
There are numerous types of programming languages developed in the last decades, and most of them provide interface to call C++ or C for high efficiency implementation. The motivation of Svar is to design an efficient, light-weighted and general midd
Variational Quantum Circuits (VQCs), or the so-called quantum neural-networks, are predicted to be one of the most important near-term quantum applications, not only because of their similar promises as classical neural-networks, but also because of
Serverless computing has emerged as a promising alternative to infrastructure- (IaaS) and platform-as-a-service (PaaS)cloud platforms for applications with ample parallelism and intermittent activity. Serverless promises greater resource elasticity,
This EPTCS volume contains the proceedings of the 16th Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL 2019) held in Prague, Czech Republic, on Sunday 7 April 2019. QAPL 2019 was a satellite event of the European Joint Con