ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Ultrastrong Optomechanics

71   0   0.0 ( 0 )
 نشر من قبل Jie-Qiao Liao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a reliable scheme to realize a generalized ultrastrong optomechanical coupling in a two-mode cross-Kerr-type coupled system, where one of the bosonic modes is strongly driven. The effective optomechanical interaction takes the form of a product of the photon number operator of one mode and the quadrature operator of the other mode. The coupling strength and quadrature phase are both tunable via the driving field. The coupling strength can be strongly enhanced to reach the ultrastrong-coupling regime, where the few-photon optomechanical effects such as photon blockade and macroscopically distinct quantum superposition become accessible. The presence of tunable quadrature phase also enables the implementation of geometric quantum operations. Numerical simulations show that this method works well in a wide parameter space. We also present an analysis of the experimental implementation of this scheme.



قيم البحث

اقرأ أيضاً

173 - Xian-Li Yin , Yue-Hui Zhou , 2021
The observation of single-photon optomechanical effects is a desired task in cavity optomechanics. However, the realization of ultrastrong optomechanical interaction remains a big challenge. Here, we present an all-optical scheme to simulate ultrastr ong optomechanical coupling based on a Fredkin-type interaction, which consists of two exchange-coupled modes with the coupling strength depending on the photon number in another controller mode. This coupling enhancement is assisted by the displacement amplification according to the physical idea of the Bogoliubov approximation, which is realized by utilizing a strong driving to pump one of the two exchanging modes. Our numerical simulations demonstrate that the enhanced optomechanical coupling can enter the single-photon strong-coupling and even ultrastrong-coupling regimes. We also show the creation of macroscopic quantum superposed states and the implementation of a weak-to-strong transition for quantum measurement in this system. This work will pave the way to quantum simulation of single-photon optomechanical effects with current experimental platforms.
We propose a reliable scheme to simulate tunable and ultrastrong mixed (first-order and quadratic optomechanical couplings coexisting) optomechanical interactions in a coupled two-mode bosonic system, in which the two modes are coupled by a cross-Ker r interaction and one of the two modes is driven through both the single- and two-excitation processes. We show that the mixed-optomechanical interactions can enter the single-photon strong-coupling and even ultrastrong-coupling regimes. The strengths of both the first-order and quadratic optomechanical couplings can be controlled on demand, and hence first-order, quadratic, and mixed optomechanical models can be realized. In particular, the thermal noise of the driven mode can be suppressed totally by introducing a proper squeezed vacuum bath. We also study how to generate the superposition of coherent squeezed state and vacuum state based on the simulated interactions. The quantum coherence effect in the generated states is characterized by calculating the Wigner function in both the closed- and open-system cases. This work will pave the way to the observation and application of ultrastrong optomechanical effects in quantum simulators.
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscill ators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.
We investigate theoretically the extension of cavity optomechanics to multiple membrane systems. We describe such a system in terms of the coupling of the collective normal modes of the membrane array to the light fields. We show these modes can be o ptically addressed individually and be cooled, trapped and characterized, e.g. via quantum nondemolition measurements. Analogies between this system and a linear chain of trapped ions or dipolar molecules imply the possibility of related applications in the quantum regime.
Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bi-directional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely t his fundamental principle. Surface acoustic waves provide a versatile interconnect on a chip and, thus, enable the optomechanical control of remote systems. Here, we report on the coherent nonlinear three-wave mixing between the coherent fields of two radio frequency surface acoustic waves and optical laser photons via the dipole transition of a single quantum dot exciton. In the resolved sideband regime, we demonstrate fundamental acoustic analogues of sum and difference frequency generation between the two SAWs and employ phase matching to deterministically enhance or suppress individual sidebands. This bi-directional transfer between the acoustic and optical domains is described by theory which fully takes into account direct and virtual multi-phonon processes. Finally, we show that the precision of the wave mixing is limited by the frequency accuracy of modern radio frequency electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا