ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the $C$-scheme coupling

60   0   0.0 ( 0 )
 نشر من قبل Xing-Gang Wu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested $C$-scheme coupling, one can obtain a demonstration that the {it Principle of Maximum Conformality} prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the non-singlet Adler function and for $tau $ decay to $ u +$ hadrons at the four-loop level.



قيم البحث

اقرأ أيضاً

The conventional approach to fixed-order perturbative QCD predictions is based on an arbitrary choice of the renormalization scale, together with an arbitrary range. This {it ad hoc} assignment of the renormalization scale causes the coefficients of the QCD running coupling at each perturbative order to be strongly dependent on the choice of both the renormalization scale and the renormalization scheme. However, such ambiguities are not necessary, since as a basic requirement of renormalization group invariance (RGI), any physical observable must be independent of the choice of both the renormalization scheme and the renormalization scale. In fact, if one uses the {it Principle of Maximum Conformality} (PMC) to fix the renormalization scale, the coefficients of the pQCD series match the series of conformal theory, and they are thus scheme independent. It has been found that the elimination of the scale and scheme ambiguities at all orders relies heavily on how precisely we know the analytic form of the QCD running coupling $alpha_s$. In this review, we summarize the known properties of the QCD running coupling and its recent progresses, especially for its behavior within the asymptotic region. We also summarize the current progress on the PMC and some of its typical applications, showing to what degree the conventional renormalization scheme-and-scale ambiguities can be eliminated after applying the PMC. We also compare the PA approach for the conventional scale-dependent pQCD series and the PMC scale-independent conformal series. We observe that by using the conformal series, the PA approach can provide a more reliable estimate of the magnitude of the uncalculated terms. And if the conformal series for an observable has been calculated up to $n_{rm th}$-order level, then the $[N/M]=[0/n-1]$-type PA series provides an important estimate for the higher-order terms.
A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale $mu$ of the running coupling $alpha_s(mu^2).$ The purpose of the running coupling in any gauge theory is to sum all terms involvi ng the $beta$ function; in fact, when the renormalization scale is set properly, all non-conformal $beta e 0$ terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with $beta=0$. The resulting scale-fixed predictions using the principle of maximum conformality (PMC) are independent of the choice of renormalization scheme -- a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors $n_f$ in the QCD $beta$ function is also correctly determined. We discuss several methods for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.
In the paper, we study the $Upsilon(1S)$ leptonic decay width $Gamma(Upsilon(1S)to ell^+ell^-)$ by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum flow of the process, whose value is independent to the choice of the renormalization scale and its prediction thus avoids the conventional renormalization scale ambiguities. Using the known next-to-next-to-next-to-leading order perturbative series together with the PMC single scale-setting approach, we do obtain a renormalization scale independent decay width, $Gamma_{Upsilon(1S) to e^+ e^-} = 1.262^{+0.195}_{-0.175}$ keV, where the error is squared average of those from $alpha_s(M_{Z})=0.1181pm0.0011$, $m_b=4.93pm0.03$ GeV and the choices of factorization scales within $pm 10%$ of their central values. To compare with the result under conventional scale-setting approach, this decay width agrees with the experimental value within errors, indicating the importance of a proper scale-setting approach.
We present a detailed study on the properties of the free energy density at the high temperature by applying the principle of maximum conformality (PMC) scale-setting method within the effective field theory. The PMC utilizes the renormalization grou p equation recursively to identify the occurrence and pattern of the non-conformal ${beta_i}$-terms, and determines the optimal renormalization scale at each order. Our analysis shows that a more accurate free energy density up to $g_s^5$-order level without renormalization scale dependence can be achieved by applying the PMC. We also observe that by using a smaller factorization scale around the effective parameter $m_E$, the PMC prediction shall be consistent with the Lattice QCD prediction derived at the low temperature.
The next-to-next-to-leading order (NNLO) pQCD prediction for the $gammagamma^* to eta_c$ form factor was evaluated in 2015 using nonrelativistic QCD (NRQCD). A strong discrepancy between the NRQCD prediction and the BaBar measurements was observed. U ntil now there has been no solution for this puzzle. In this paper, we present a NNLO analysis by applying the Principle of Maximum Conformality (PMC) to set the renormalization scale. By carefully dealing with the light-by-light diagrams at the NNLO level, the resulting high precision PMC prediction agrees with the BaBar measurements within errors, and the conventional renormalization scale uncertainty is eliminated. The PMC is consistent with all of the requirements of the renormalization group, including scheme-independence. The application of the PMC thus provides a rigorous solution for the $gammagamma^* to eta_c$ form factor puzzle, emphasizing the importance of correct renormalization scale-setting. The results also support the applicability of NRQCD to hard exclusive processes involving charmonium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا