ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Tagging: photometric redshift refinement and group richness enhancement

54   0   0.0 ( 0 )
 نشر من قبل Prajwal Kafle Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new scheme, $it{galtag}$, for refining the photometric redshift measurements of faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-cone data constructed on the GALFORM galaxy formation model to tests its validity. We then apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS) over a 1 deg$^2$ region centred at 15$^mathrm{h}$. This region contains Galaxy and Mass Assembly (GAMA) deep spectroscopic observations (i-band<22) and an accompanying group catalogue to r-band<19.8. We demonstrate that even with some trade-off in sample size, an order of magnitude improvement on the accuracy of photometric redshifts is achievable when using $it{galtag}$. This approach provides both refined photometric redshift measurements and group richness enhancement. In combination these products will hugely improve the scientific potential of both photometric and spectroscopic datasets. The $it{galtag}$ software will be made publicly available at https://github.com/pkaf/galtag.git.


قيم البحث

اقرأ أيضاً

The first generation of large-scale chemical tagging surveys, in particular the HERMES/GALAH million star survey, promises to vastly expand our understanding of the chemical and dynamical evolution of the Galaxy. This, however, is contingent on our a bility to confidently perform chemical tagging on such a large data-set. Chemical homogeneity has been observed across a range of elements within several Galactic open clusters, yet the level to which this is the case globally, and particularly in comparison to the scatter across clusters themselves, is not well understood. The patterns of elements in coeval cluster members, occupying a complex chemical abundance space, are rooted in the evolution, ultimately the nature of the very late stages, of early generations of stars. The current astrophysical models of such stages are not yet sufficient to explain all observations, combining with our significant gaps in the understanding of star formation, makes this a difficult arena to tackle theoretically. Here, we describe a robust pair-wise metric used to gauge the chemical difference between two stellar components. This metric is then applied to a database of high-resolution literature abundance sources to derive a function describing the probability that two stars are of common evolutionary origin. With this cluster probability function, it will be possible to report a confidence, grounded in empirical observational evidence, with which clusters are detected, independent of the group finding methods. This formulation is also used to probe the role of chemical dimensionality, and that of individual chemical species, on the ability of chemical tagging to differentiate coeval groups of stars.
We present a multi-band analysis of the six Hubble Frontier Field clusters and their parallel fields, producing catalogs with measurements of source photometry and photometric redshifts. We release these catalogs to the public along with maps of intr acluster light and models for the brightest galaxies in each field. This rich data set covers a wavelength range from 0.2 to 8 $mu m$, utilizing data from the Hubble Space Telescope, Keck Observatories, Very Large Telescope array, and Spitzer Space Telescope. We validate our products by injecting into our fields and recovering a population of synthetic objects with similar characteristics as in real extragalactic surveys. The photometric catalogs contain a total of over 32,000 entries with 50% completeness at a threshold of $mathrm{mag_{AB}}sim 29.1$ for unblended sources, and $mathrm{mag_{AB}}sim 29$ for blended ones, in the IR-Weighted detection band. Photometric redshifts were obtained by means of template fitting and have an average outlier fraction of 10.3% and scatter $sigma = 0.067$ when compared to spectroscopic estimates. The software we devised, after being tested in the present work, will be applied to new data sets from ongoing and future surveys.
We present and describe a catalog of galaxy photometric redshifts (photo-zs) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-zs and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for $sim$ 13 million objects classified as galaxies in the coadd with $r < 24.5$. The photo-z and photo-z error estimators are trained and validated on a sample of $sim 83,000$ galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the VIsible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than $sigma_{68} =0.031$. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
We introduce Z-Sequence, a novel empirical model that utilises photometric measurements of observed galaxies within a specified search radius to estimate the photometric redshift of galaxy clusters. Z-Sequence itself is composed of a machine learning ensemble based on the k-nearest neighbours algorithm. We implement an automated feature selection strategy that iteratively determines appropriate combinations of filters and colours to minimise photometric redshift prediction error. We intend for Z-Sequence to be a standalone technique but it can be combined with cluster finders that do not intrinsically predict redshift, such as our own DEEP-CEE. In this proof-of-concept study we train, fine-tune and test Z-Sequence on publicly available cluster catalogues derived from the Sloan Digital Sky Survey. We determine the photometric redshift prediction error of Z-Sequence via the median value of $|Delta z|/(1+z)$ (across a photometric redshift range of $0.05 le textit{z} le 0.6$) to be $sim0.01$ when applying a small search radius. The photometric redshift prediction error for test samples increases by 30-50 per cent when the search radius is enlarged, likely due to line-of-sight interloping galaxies. Eventually, we aim to apply Z-Sequence to upcoming imaging surveys such as the Legacy Survey of Space and Time to provide photometric redshift estimates for large samples of as yet undiscovered and distant clusters.
Improving distance measurements in large imaging surveys is a major challenge to better reveal the distribution of galaxies on a large scale and to link galaxy properties with their environments. Photometric redshifts can be efficiently combined with the cosmic web (CW) extracted from overlapping spectroscopic surveys to improve their accuracy. We apply a similar method using a new generation of photometric redshifts based on a convolution neural network (CNN). The CNN is trained on the SDSS images with the main galaxy sample (SDSS-MGS, $r leq 17.8$) and the GAMA spectroscopic redshifts up tor $sim 19.8$. The mapping of the CW is obtained with 680,000 spectroscopic redshifts from the MGS and BOSS surveys. The redshift probability distribution functions (PDF), which are well calibrated (unbiased and narrow, $leq 120$ Mpc), intercept a few CW structure along the line of sight. Combining these PDFs with the density field distribution provides new photometric redshifts, $z_{web}$, whose accuracy is improved by a factor of two (i.e.,${sigma} sim 0.004(1+z)$) for galaxies with $r leq 17.8$. For half of them, the distance accuracy is better than 10 cMpc. The narrower the original PDF, the larger the boost in accuracy. No gain is observed for original PDFs wider than 0.03. The final $z_{web}$ PDFs also appear well calibrated. The method performs slightly better for passive galaxies than star-forming ones, and for galaxies in massive groups since these populations better trace the underlying large-scale structure. Reducing the spectroscopic sampling by a factor of 8 still improves the photometric redshift accuracy by 25%. Extending the method to galaxies fainter than the MGS limit still improves the redshift estimates for 70% of the galaxies, with a gain in accuracy of 20% at low $z$ where the resolution of the CW is the highest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا