ﻻ يوجد ملخص باللغة العربية
An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the $bar{p}/p$ fraction, which in the absence of any direct measurements, provide the tightest available constraints of $sim1%$ on the antiproton fraction for energies between 1 and 10 TeV.
One of the main objectives of the ANTARES telescope is the search for point-like neutrino sources. Both the pointing accuracy and the angular resolution of the detector are important in this context and a reliable way to evaluate this performance is
Galaxy clusters are being assembled today in the most energetic phase of hierarchical structure formation which manifests itself in powerful shocks that contribute to a substantial energy density of cosmic rays (CRs). Hence, clusters are expected to
The Earth is subjected to a uniform flux of very-high-energy (VHE, E > 100 GeV) cosmic rays unless they are obscured by an object, such as the Moon, in which case a deficit or shadow is created. Since cosmic rays are charged this deficit is deflected
We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clus
We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this Moon shadow is used to characterize the angular resolution and absolute pointing capabilities of the dete