ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Varying Block Codes for Synchronization Errors: MAP Decoder and Practical Issues

100   0   0.0 ( 0 )
 نشر من قبل Johann Briffa
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

begin{abstract} In this paper we consider Time-Varying Block (TVB) codes, which generalize a number of previous synchronization error-correcting codes. We also consider various practical issues related to MAP decoding of these codes. Specifically, we give an expression for the expected distribution of drift between transmitter and receiver due to synchronization errors. We determine an appropriate choice for state space limits based on the drift probability distribution. In turn, we obtain an expression for the decoder complexity under given channel conditions in terms of the state space limits used. For a given state space, we also give a number of optimizations that reduce the algorithm complexity with no further loss of decoder performance. We also show how the MAP decoder can be used in the absence of known frame boundaries, and demonstrate that an appropriate choice of decoder parameters allows the decoder to approach the performance when frame boundaries are known, at the expense of some increase in complexity. Finally, we express some existing constructions as TVB codes, comparing performance with published results, and showing that improved performance is possible by taking advantage of the flexibility of TVB codes.



قيم البحث

اقرأ أيضاً

Full-rate space-time block codes (STBCs) achieve high spectral-efficiency by transmitting linear combinations of information symbols through every transmit antenna. However, the coefficients used for the linear combinations, if not chosen carefully, results in ({em i}) large number of processor bits for the encoder and ({em ii}) high peak-to-average power ratio (PAPR) values. In this work, we propose a new class of full-rate STBCs called Integer STBCs (ICs) for multiple-input multiple-output (MIMO) fading channels. A unique property of ICs is the presence of integer coefficients in the code structure which enables reduced numbers of processor bits for the encoder and lower PAPR values. We show that the reduction in the number of processor bits is significant for small MIMO channels, while the reduction in the PAPR is significant for large MIMO channels. We also highlight the advantages of the proposed codes in comparison with the well known full-rate algebraic STBCs.
The question whether RM codes are capacity-achieving is a long-standing open problem in coding theory that was recently answered in the affirmative for transmission over erasure channels [1], [2]. Remarkably, the proof does not rely on specific prope rties of RM codes, apart from their symmetry. Indeed, the main technical result consists in showing that any sequence of linear codes, with doubly-transitive permutation groups, achieves capacity on the memoryless erasure channel under bit-MAP decoding. Thus, a natural question is what happens under block-MAP decoding. In [1], [2], by exploiting further symmetries of the code, the bit-MAP threshold was shown to be sharp enough so that the block erasure probability also converges to 0. However, this technique relies heavily on the fact that the transmission is over an erasure channel. We present an alternative approach to strengthen results regarding the bit-MAP threshold to block-MAP thresholds. This approach is based on a careful analysis of the weight distribution of RM codes. In particular, the flavor of the main result is the following: assume that the bit-MAP error probability decays as $N^{-delta}$, for some $delta>0$. Then, the block-MAP error probability also converges to 0. This technique applies to transmission over any binary memoryless symmetric channel. Thus, it can be thought of as a first step in extending the proof that RM codes are capacity-achieving to the general case.
In multiple-input multiple-output (MIMO) fading channels, the design criterion for full-diversity space-time block codes (STBCs) is primarily determined by the decoding method at the receiver. Although constructions of STBCs have predominantly matche d the maximum-likelihood (ML) decoder, design criteria and constructions of full-diversity STBCs have also been reported for low-complexity linear receivers. A new receiver architecture called Integer-Forcing (IF) linear receiver has been proposed to MIMO channels by Zhan et al. which showed promising results for the high-rate V-BLAST encoding scheme. In this paper, we address the design of full-diversity STBCs for IF linear receivers. In particular, we are interested in characterizing the structure of STBCs that provide full-diversity with the IF receiver. Along that direction, we derive an upper bound on the probability of decoding error, and show that STBCs that satisfy the restricted non-vanishing singular value (RNVS) property provide full-diversity for the IF receiver. Furthermore, we prove that all known STBCs with the non-vanishing determinant property provide full-diversity with IF receivers, as they guarantee the RNVS property. By using the formulation of RNVS property, we also prove the existence of a full-diversity STBC outside the class of perfect STBCs, thereby adding significant insights compared to the existing works on STBCs with IF decoding. Finally, we present extensive simulation results to demonstrate that linear designs with RNVS property provide full-diversity for IF receiver.
Polar codes, discovered by Ar{i}kan, are the first error-correcting codes with an explicit construction to provably achieve channel capacity, asymptotically. However, their error-correction performance at finite lengths tends to be lower than existin g capacity-approaching schemes. Using the successive-cancellation algorithm, polar decoders can be designed for very long codes, with low hardware complexity, leveraging the regular structure of such codes. We present an architecture and an implementation of a scalable hardware decoder based on this algorithm. This design is shown to scale to code lengths of up to N = 2^20 on an Altera Stratix IV FPGA, limited almost exclusively by the amount of available SRAM.
Due to its high data density and longevity, DNA is considered a promising medium for satisfying ever-increasing data storage needs. However, the diversity of errors that occur in DNA sequences makes efficient error-correction a challenging task. This paper aims to address simultaneously correcting two types of errors, namely, short tandem duplication and substitution errors. We focus on tandem repeats of length at most 3 and design codes for correcting an arbitrary number of duplication errors and one substitution error. Because a substituted symbol can be duplicated many times (as part of substrings of various lengths), a single substitution can affect an unbounded substring of the retrieved word. However, we show that with appropriate preprocessing, the effect may be limited to a substring of finite length, thus making efficient error-correction possible. We construct a code for correcting the aforementioned errors and provide lower bounds for its rate. Compared to optimal codes correcting only duplication errors, numerical results show that the asymptotic cost of protecting against an additional substitution is only 0.003 bits/symbol when the alphabet has size 4, an important case corresponding to data storage in DNA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا