ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field generation in plasma waves driven by co-propagating intense twisted lasers

330   0   0.0 ( 0 )
 نشر من قبل Yin Shi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new magnetic field generation mechanism in underdense plasmas driven by the beating of two, co-propagating, Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser pulses with different frequencies and also different twist indices. The resulting twisted ponderomotive force drives up an electron plasma wave with a helical rotating structure. To second order, there is a nonlinear rotating current leading to the onset of an intense, static axial magnetic field, which persists over a long time in the plasma (ps scale) after the laser pulses have passed by. The results are confirmed in three-dimensional particle-in-cell simulations and also theoretical analysis. For the case of 300 fs duration, 3.8x10^17 W/cm^2 peak laser intensity we observe magnetic field of up to 0.4 MG. This new method of magnetic field creation may find applications in charged beam collimation and controlled fusion.


قيم البحث

اقرأ أيضاً

A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis . By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. Due to the resultant collective motion of relativistic charged particles around the central axis, strong spin current densities of ~ peta-ampere/cm2 are produced with a few tens of nm size, generating megatesla-order magnetic fields. The underlying physics and important scaling are revealed by particle simulations and a simple analytical model. The concept holds promise to open new frontiers in many branches of fundamental physics and applications in terms of ultrahigh magnetic fields.
305 - Suo Tang , Naveen Kumar 2018
A robust plasma gating to generate a single ultra-intense attosecond pulse is developed. It is a manifestation of the hole-boring effect that limits the strongest attosecond pulse emission within one laser cycle. The generated pulse is characterized by a stabilized harmonic phase $psi approx pmpi/2$ and a slowly decaying exponential spectrum bounded by $gamma$-spike scaling and CSE scaling. The phase oscillations in low-frequency region and fluctuations in high-frequency region are discussed. We also show that the phase fluctuations in high-frequency region can be reduced by including radiation reaction force.
Resonant electron interaction with whistler-mode chorus waves is recognized as one of the main drivers of radiation belt dynamics. For moderate wave intensity, this interaction is well described by quasi-linear theory. However, recent statistics of p arallel propagating chorus waves have demonstrated that 5-20% of the observed waves are sufficiently intense to interact nonlinearly with electrons. Such interactions include phase trapping and phase bunching (nonlinear scattering) effects not described by the quasi-linear diffusion. For sufficiently long (large) wave-packets, these nonlinear effects can result in very rapid electron acceleration and scattering. In this paper we introduce a method to include trapping and nonlinear scattering into the kinetic equation describing the evolution of the electron distribution function. We use statistics of Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations to determine the probability distribution of intense, long wave-packets as function of power and frequency. Then we develop an analytical model of particle resonance of an individual particle with an intense chorus wave-packet and derive the main properties of this interaction: probability of electron trapping, energy change due to trapping and nonlinear scattering. These properties are combined in a nonlocal operator acting on the electron distribution function. When multiple waves are present, we average the obtained operator over the observed distributions of waves and examine solutions of the resultant kinetic equation. We also examine energy conservation and its implications in systems with the nonlinear wave-particle interaction.
It is conjectured that all perturbative approaches to quantum electrodynamics (QED) break down in the collision of a high-energy electron beam with an intense laser, when the laser fields are boosted to `supercritical strengths far greater than the c ritical field of QED. As field strengths increase toward this regime, cascades of photon emission and electron-positron pair creation are expected, as well as the onset of substantial radiative corrections. Here we identify the important role played by the collision angle in mitigating energy losses to photon emission that would otherwise prevent the electrons reaching the supercritical regime. We show that a collision between an electron beam with energy in the tens of GeV and a laser pulse of intensity $10^{24}~text{W}text{cm}^{-2}$ at oblique, or even normal, incidence is a viable platform for studying the breakdown of perturbative strong-field QED. Our results have implications for the design of near-term experiments as they predict that certain quantum effects are enhanced at oblique incidence.
It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup. We confirm these results by cons idering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا