ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

60   0   0.0 ( 0 )
 نشر من قبل Ryui Kaneko
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a $mathbb{Z}_6$ anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.



قيم البحث

اقرأ أيضاً

Polyvalent metal melts (gallium, tin, bismuth, etc.) have microscopic structural features, which are detected by neutron and X-ray diffraction and which are absent in simple liquids. Based on neutron and X-ray diffraction data and results of textit{a b initio} molecular dynamics simulations for liquid gallium, we examine the structure of this liquid metal at atomistic level. Time-resolved cluster analysis allows one to reveal that the short-range structural order in liquid gallium is determined by a range of the correlation lengths. This analysis performed over set of independent samples corresponding to equilibrium liquid phase discloses that there are no stable crystalline domains as well as molecule-like Ga$_2$ dimers typical for crystal phases of gallium. Structure of liquid gallium can be reproduced by the simplified model of the close-packed system of soft quasi-spheres. The results can be applied to analyze the fine structure of other polyvalent liquid metals.
62 - R. Schick , T. Ziman , 2020
In frustrated magnetic systems with competing interactions fluctuations can lift the residual accidental degeneracy. We argue that the state selection may have different outcomes for quantum and thermal order by disorder. As an example, we consider t he semiclassical Heisenberg fcc antiferromagnet with only the nearest-neighbor interactions. Zero-point oscillations select the type 3 collinear antiferromagnetic state at T=0. Thermal fluctuations favor instead the type 1 antiferromagnetic structure. The opposite tendencies result in a finite-temperature transition between the two collinear states. Competition between effects of quantum and thermal order by disorder is a general phenomenon and is also realized in the J1-J2 square-lattice antiferromagnet at the critical point J2 = 0.5 J1.
The van der Waals magnets provide an ideal platform to explore quantum magnetism both theoretically and experimentally. We study a classical J1-J2 model with distinct magnetic degrees of freedom on a honeycomb lattice that can be realized in some van der Waals magnets. We find that the model develops a spiral spin liquid (SSL), a massively degenerated state with spiral contours in the reciprocal space, not only for continuous spin vectors, XY and Heisenberg spins but also for Ising spin moments. Surprisingly, the SSL is more robust for the Ising case, and the shape of the spiral contours is pinned to an emergent kagome structure at the low temperatures for different J2. The spin-chirality order for the continuous spins at the finite temperatures is further connected to the electric polarization via the inverse Dzyaloshinski-Moriya mechanism. These results provide a guidance for the experimental realization of 2D SSLs, and the SSL can further be used as the mother state to generate skyrmions that are promising candidates for future memory devices.
We study the quantum critical phenomena emerging at the transition from triple-Weyl semimetal to band insulator, which is a topological phase transition described by the change of topological invariant. The critical point realizes a new type of semim etal state in which the fermion dispersion is cubic along two directions and quadratic along the third. Our renormalization group analysis reveals that, the Coulomb interaction is marginal at low energies and even arbitrarily weak Coulomb interaction suffices to induce an infrared fixed point. We compute a number of observable quantities, and show that they all exhibit non-Fermi liquid behaviors at the fixed point. When the interplay between the Coulomb and short-range four-fermion interactions is considered, the system becomes unstable below a finite energy scale. The system undergoes a first-order topological transition when the fermion flavor $N$ is small, and enters into a nematic phase if $N$ is large enough. Non-Fermi liquid behaviors are hidden by the instability at low temperatures, but can still be observed at higher temperatures. Experimental detection of the predicted phenomena is discussed.
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions. The replica formalism is used to obtain an effective single cluster model from where the thermodynamics is analyzed by exact diagonalization. We found that the presence of GF can introduce cluster freezing at very low levels of disorder. The system exhibits an entropy plateau followed by a large entropy drop close to the freezing temperature. In this scenario, a spin-liquid (SL) behavior prevents conventional long-range order, but an infinitesimal disorder picks out uncompensated cluster states from the multi degenerate SL regime, potentializing the intercluster disordered coupling and bringing the cluster spin-glass state. To summarize, our results suggest that the SL state combined with low levels of disorder can activate small clusters, providing hypersensitivity to the freezing process in geometrically frustrated materials and playing a key role in the glassy stabilization. We propose that this physical mechanism could be present in several geometrically frustrated materials. In particular, we discuss our results in connection to the recent experimental investigations of the Ising kagome compound Co$_3$Mg(OH)$_6$Cl$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا