ترغب بنشر مسار تعليمي؟ اضغط هنا

Programmable interference between two microwave quantum memories

150   0   0.0 ( 0 )
 نشر من قبل Yvonne Gao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interference experiments provide a simple yet powerful tool to unravel fundamental features of quantum physics. Here we engineer an RF-driven, time-dependent bilinear coupling that can be tuned to implement a robust 50:50 beamsplitter between stationary states stored in two superconducting cavities in a three-dimensional architecture. With this, we realize high contrast Hong-Ou- Mandel (HOM) interference between two spectrally-detuned stationary modes. We demonstrate that this coupling provides an efficient method for measuring the quantum state overlap between arbitrary states of the two cavities. Finally, we showcase concatenated beamsplitters and differential phase shifters to implement cascaded Mach-Zehnder interferometers, which can control the signature of the two-photon interference on-demand. Our results pave the way toward implementation of scalable boson sampling, the application of linear optical quantum computing (LOQC) protocols in the microwave domain, and quantum algorithms between long-lived bosonic memories.



قيم البحث

اقرأ أيضاً

Optical approaches to quantum computation require the creation of multi-mode photonic quantum states in a controlled fashion. Here we experimentally demonstrate phase locking of two all-optical quantum memories, based on a concatenated cavity system with phase reference beams, for the time-controlled release of two-mode entangled single-photon states. The release time for each mode can be independently determined. The generated states are characterized by two-mode optical homodyne tomography. Entanglement and nonclassicality are preserved for release-time differences up to 400 ns, confirmed by logarithmic negativities and Wigner-function negativities, respectively.
Modular quantum computing architectures require fast and efficient distribution of quantum information through propagating signals. Here we report rapid, on-demand quantum state transfer between two remote superconducting cavity quantum memories thro ugh traveling microwave photons. We demonstrate a quantum communication channel by deterministic transfer of quantum bits with 76% fidelity. Heralding on errors induced by experimental imperfection can improve this to 87% with a success probability of 0.87. By partial transfer of a microwave photon, we generate remote entanglement at a rate that exceeds photon loss in either memory by more than a factor of three. We further show the transfer of quantum error correction code words that will allow deterministic mitigation of photon loss. These results pave the way for scaling superconducting quantum devices through modular quantum networks.
We have measured quantum interference between two single microwave photons trapped in a superconducting resonator, whose frequencies are initially about 6 GHz apart. We accomplish this by use of a parametric frequency conversion process that mixes th e mode currents of two cavity harmonics through a superconducting quantum interference device, and demonstrate that a two-photon entanglement operation can be performed with high fidelity.
Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theo retical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks.
560 - P. Maunz , S. Olmschenk , D. Hayes 2009
We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine clock state atomic qubits and mediated by the interference of two emitted photons carrying frequency enco ded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. This entangling gate together with single qubit operations is sufficient to generate large entangled cluster states for scalable quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا