ﻻ يوجد ملخص باللغة العربية
We consider the problem of determining the zero-error list-decoding capacity of the $q/(q-1)$ channel studied by Elias (1988). The $q/(q-1)$ channel has input and output alphabet consisting of $q$ symbols, say, $Q = {x_1,x_2,ldots, x_q}$; when the channel receives an input $x in Q$, it outputs a symbol other than $x$ itself. Let $n(m,q,ell)$ be the smallest $n$ for which there is a code $C subseteq Q^n$ of $m$ elements such that for every list $w_1, w_2, ldots, w_{ell+1}$ of distinct code-words from $C$, there is a coordinate $j in [n]$ that satisfies ${w_1[j], w_2[j], ldots, w_{ell+1}[j]} = Q$. We show that for $epsilon<1/6$, for all large $q$ and large enough $m$, $n(m,q, epsilon qln{q}) geq Omega(exp{(q^{1-6epsilon}/8)}log_2{m})$. The lower bound obtained by Fredman and Koml{o}s (1984) for perfect hashing implies that $n(m,q,q-1) = exp(Omega(q)) log_2 m$; similarly, the lower bound obtained by K{o}rner (1986) for nearly-perfect hashing implies that $n(m,q,q) = exp(Omega(q)) log_2 m$. These results show that the zero-error list-decoding capacity of the $q/(q-1)$ channel with lists of size at most $q$ is exponentially small. Extending these bounds, Chakraborty et al. (2006) showed that the capacity remains exponentially small even if the list size is allowed to be as large as $1.58q$. Our result implies that the zero-error list-decoding capacity of the $q/(q-1)$ channel with list size $epsilon q$ for $epsilon<1/6$ is $exp{(Omega(q^{1-6epsilon}))}$. This resolves the conjecture raised by Chakraborty et al. (2006) about the zero-error list-decoding capcity of the $q/(q-1)$ channel at larger list sizes.
Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). L
The zero-error feedback capacity of the Gelfand-Pinsker channel is established. It can be positive even if the channels zero-error capacity is zero in the absence of feedback. Moreover, the error-free transmission of a single bit may require more tha
We show that Reed-Muller codes achieve capacity under maximum a posteriori bit decoding for transmission over the binary erasure channel for all rates $0 < R < 1$. The proof is generic and applies to other codes with sufficient amount of symmetry as
Using tools developed in a recent work by Shen and the second author, in this paper we carry out an in-depth study on the average decoding error probability of the random matrix ensemble over the erasure channel under three decoding principles, namel
BCH codes are an interesting class of cyclic codes due to their efficient encoding and decoding algorithms. In many cases, BCH codes are the best linear codes. However, the dimension and minimum distance of BCH codes have been seldom solved. Until no