ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Axion like particles using Laue-case conversion in a single crystal

79   0   0.0 ( 0 )
 نشر من قبل Tomohiro Yamaji
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axion Like Particles (ALPs) with a sub-keV range mass are searched by using the light-shining-through-a-wall technique. A novel system is developed in which injected X rays are converted and reconverted by the Laue-case conversion within a silicon single crystal with dual blades. The resonant ALPs mass of the conversion is scanned by varying the X-ray injection angle to the crystal. No significant signals are observed, and 90% C. L. upper limits on the ALP-two photon coupling constant are obtained as follows, g_{agammagamma} < 4.2 times 10^{-3} GeV^{-1} (m_a < 10 eV), g_{agammagamma} < 5.0 times 10^{-3} GeV^{-1} (46 eV < m_a < 1020 eV). These are the most stringent laboratorial constraints on ALPs heavier than 300 eV.



قيم البحث

اقرأ أيضاً

Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for Light Shining through a Wall from the quantum o scillation of optical photons into Weakly Interacting Sub-eV Particles, such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of $2 times 14.3$ m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than $3.5cdot 10^{-8}$ GeV$^{-1}$ and $3.2cdot 10^{-8}$ GeV$^{-1}$, respectively, at 95% Confidence Level.
We report the first results of the GammeV experiment, a search for milli-eV mass particles with axion-like couplings to two photons. The search is performed using a light shining through a wall technique where incident photons oscillate into new weak ly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10^{-7} GeV^{-1} (3.5x10^{-7} GeV^{-1}) in the limit of massless particles.
We present an analysis of electron recoils in cryogenic germanium detectors operated during the SuperCDMS Soudan experiment. The data are used to set new constraints on the axioelectric coupling of axion-like particles and the kinetic mixing paramete r of dark photons, assuming the respective species constitutes all of the galactic dark matter. This study covers the mass range from 40 eV/$c^2$ to 500 eV/$c^2$ for both candidates, excluding previously untested parameter space for masses below ~1 keV/$c^2$. For the kinetic mixing of dark photons, values below $10^{-15}$ are reached for particle masses around 100 eV/$c^2$; for the axioelectric coupling of axion-like particles, values below $10^{-12}$ are reached for particles with masses in the range of a few-hundred eV/$c^2$.
We present a search for the direct production of a light pseudoscalar $a$ decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process ${e^+e^-togamma a, a togammagamma}$ in the mass range ${0.2} ,< m_a < {9.7},{text{GeV/$c$}^2}$ using data corresponding to an integrated luminosity of $(445pm 3),text{pb}^{-1}$. Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axion-like particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for ALPs and set 95% confidence level upper limits on the coupling strength $g_{agammagamma}$ of ALPs to photons at the level of $10^{-3},{text{GeV}^{-1}}$. The limits are the most restrictive to date for $0.2,<,m_a,<,1,{text{GeV/$c$}^2}$.
157 - M. Arik , S. Aune , K. Barth 2015
The CERN Axion Solar Telescope (CAST) searches for $atogamma$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to mat ch the X-ray refractive mass $m_gamma$ to the axion search mass $m_a$. After the vacuum phase (2003--2004), which is optimal for $m_alesssim0.02$ eV, we used $^4$He in 2005--2007 to cover the mass range of 0.02--0.39 eV and $^3$He in 2009--2011 to scan from 0.39--1.17 eV. After improving the detectors and shielding, we returned to $^4$He in 2012 to investigate a narrow $m_a$ range around 0.2 eV (candidate setting of our earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with $^4$He, to cross the axion line for the KSVZ model. We have improved the limit on the axion-photon coupling to $g_{agamma}< 1.47times10^{-10} {rm GeV}^{-1}$ (95% C.L.), depending on the pressure settings. Since 2013, we have returned to vacuum and aim for a significant increase in sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا