ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac-Phase Thermal Leptogenesis in the extended Type-I Seesaw Model

80   0   0.0 ( 0 )
 نشر من قبل Tomasz Dutka Mr
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the fact that the Dirac phase in the PMNS matrix is the only CP-violating parameter in the leptonic sector that can be measured in neutrino oscillation experiments, we examine the possibility that it is the dominant source of CP violation for leptogenesis caused by the out-of-equilibrium decays of heavy singlet fermions. We do so within a low-scale extended type-I seesaw model, featuring two Standard Model singlet fermions per family, in which lepton number is approximately conserved such that the heavy singlet neutrinos are pseudo-Dirac. We find that this produces a predictive model of leptogenesis. Our results show that for low-scale thermal leptogenesis, a pure inverse-seesaw scenario fails to produce the required asymmetry, even accounting for resonance effects, because wash-out processes are too efficient. Dirac-phase leptogenesis is, however, possible when the linear seesaw term is switched on, with the aid of the resonance contributions naturally present in the model. Degenerate and hierarchical spectra are considered -- both can achieve Dirac-phase leptogenesis, although the latter is more constrained. Finally, although unable to probe the parameter space of Dirac-phase leptogenesis, the contributions to unitarity violation of the PMNS matrix, collider constraints and charged-lepton flavour-violating processes are calculated and we further estimate the impact of the future experiments MEG-II and COMET for such models.



قيم البحث

اقرأ أيضاً

We present an S$_4$ flavour symmetric model within a minimal seesaw framework resulting in mass matrices that leads to TM$_1$ mixing. Minimal seesaw is realized by adding two right-handed neutrinos to the Standard Model. The model predicts Normal Hie rarchy (NH) for neutrino masses. Using the constrained six-dimensional parameter space, we have evaluated the effective Majorana neutrino mass, which is the parameter of interest in neutrinoless double beta decay experiments. The possibility of explaining baryogenesis via resonant leptogenesis is also examined within the model. A non-zero, resonantly enhanced CP asymmetry generated from the decay of right-handed neutrinos at the TeV scale is studied, considering flavour effects. The evolution of lepton asymmetry is discussed by solving the set of Boltzmann equations numerically and obtain the value of baryon asymmetry to be $lvert eta_B rvert = 6.3 times 10^{-10}$.
In the supersymmetric triplet (type-II) seesaw model, in which a single SU(2)_L-triplet couples to leptons, the high-energy neutrino flavour structure can be directly determined from the low-energy neutrino data. We show that even with such a minimal triplet content, leptogenesis can be naturally accommodated thanks to the resonant interference between superpotential and soft supersymmetry breaking terms.
67 - S. T. Petcov , T. Shindou 2006
The lepton flavour violating charged lepton decays mu to e + gamma and thermal leptogenesis are analysed in the minimal supersymmetric standard model with see-saw mechanism of neutrino mass generation and soft supersymmetry breaking terms with univer sal boundary conditions. Hierarchical spectrum of heavy Majorana neutrino masses, M_1 << M_2 << M_3, is considered. In this scenario, the requirement of successful thermal leptogenesis implies a lower bound on M_1. For the natural GUT values of the heaviest right-handed Majorana neutrino mass, M_3 > 5 times 10^{13} GeV, and supersymmetry particle masses in the few times 100 GeV range, the predicted mu to e + gamma decay rate exceeds by few order of magnitude the experimental upper limit. This problem is avoided if the matrix of neutrino Yukawa couplings has a specific structure. The latter leads to a correlation between the baryon asymmetry of the Universe predicted by leptogenesis, BR(mu to e + gamma) and the effective Majorana mass in neutrinoless double beta decay.
We develop an extension of the basic inverse seesaw model which addresses simultaneously two of its drawbacks, namely, the lack of explanation of the tiny Majorana mass term $mu$ for the TeV-scale singlet fermions and the difficulty in achieving succ essful leptogenesis. Firstly, we investigate systematically leptogenesis within the inverse (and the related linear) seesaw models and show that a successful scenario requires either small Yukawa couplings, implying loss of experimental signals, and/or quasi-degeneracy among singlets mass of different generations, suggesting extra structure must be invoked. Then we move to the analysis of our new framework, which we refer to as hybrid seesaw. This combines the TeV degrees of freedom of the inverse seesaw with those of a high-scale ($M_Ngg$ TeV) seesaw module in such a way as to retain the main features of both pictures: naturally small neutrino masses, successful leptogenesis, and accessible experimental signatures. We show how the required structure can arise from a more fundamental theory with a gauge symmetry or from warped extra dimensions/composite Higgs. We provide a detailed derivation of all the analytical formulae necessary to analyze leptogenesis in this new framework, and discuss the entire gamut of possibilities our scenario encompasses: including scenarios with singlet masses in the enlarged range $M_N sim 10^6 - 10^{16}$ GeV. The idea of hybrid seesaw was proposed by us in arXiv:1804.06847; here, we substantially elaborate upon and extend earlier results.
Current experimental data allow the zero value for one neutrino mass, either m_1 = 0 or m_3 = 0. This observation implies that a realistic neutrino mass texture can be established by starting from the limit (a) m_1 = m_2 = 0 and m_3 eq 0 or (b) m_1 = m_2 eq 0 and m_3 = 0. In both cases, we may introduce a particular perturbation which ensures the resultant neutrino mixing matrix to be the tri-bimaximal mixing pattern or its viable variations with all entries being formed from small integers and their square roots. We find that it is natural to incorporate this kind of neutrino mass matrix in the minimal Type-II seesaw model with only one heavy right-handed Majorana neutrino N in addition to the SU(2)_L Higgs triplet Delta_L. We show that it is possible to account for the cosmological baryon number asymmetry in the m_3 =0 case via thermal leptogenesis, in which the one-loop vertex correction to N decays is mediated by Delta_L and the CP-violating asymmetry of N decays is attributed to the electron flavor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا