ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

148   0   0.0 ( 0 )
 نشر من قبل Jirina Stone
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.



قيم البحث

اقرأ أيضاً

The quark-meson-coupling model is used to study droplet formation from the liquid-gas phase transition in cold asymmetric nuclear matter. The critical density and proton fraction for the phase transition are determined in the mean field approximation . Droplet properties are calculated in the Thomas-Fermi approximation. The electromagnetic field is explicitly included and its effects on droplet properties are studied. The results are compared with the ones obtained with the NL1 parametrization of the non-linear Walecka model.
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be applied without additional parameters to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.
We consider a chiral baryon-meson model for nucleons and their parity partners in mirror assignment interacting with pions, sigma and omega mesons to describe the liquid-gas transition of nuclear matter together with chiral symmetry restoration in th e high density phase. Within the mean-field approximation the model is known to provide a phenomenologically successful description of the nuclear-matter transition. Here, we go beyond this approximation and include mesonic fluctuations by means of the functional renormalization group. While these fluctuations do not lead to major qualitative changes in the phase diagram of the model, beyond mean-field, one is no-longer free to adjust the parameters so as to reproduce the binding energy per nucleon, the nuclear saturation density, and the nucleon sigma term all at the same time. However, the prediction of a clear first-order chiral transition at low temperatures inside the high baryon-density phase appears to be robust.
We report a new equation of state (EoS) of cold and hot hyperonic matter constructed in the framework of the quark-meson-coupling (QMC-A) model. The QMC-A EoS yields results compatible with available nuclear physics constraints and astrophysical obse rvations. It covers the range of temperatures from T=0 to 100 MeV, entropies per particle S/A between 0 and 6, lepton fractions from Y$_L$=0.0 to 0.6, and baryon number densities n$_B$=0.05-1.2 fm$^{-3}$. Applications of the QMC-A EoS are made to cold neutron stars (NS) and to hot proto-neutron stars (PNS) in two scenarios, (i) lepton rich matter with trapped neutrinos and (ii) deleptonized chemically equilibrated matter. We find that the QMC-A model predicts hyperons in amounts growing with increasing temperature and density, thus suggesting not only their presence in PNS but also, most likely, in NS merger remnants. The nucleon-hyperon phase transition is studied through the adiabatic index and the speed of sound c$_s$. It is shown that the lowering of (c$_s$/c)$^2$ to and below the conformal limit of 1/3 is a general consequence of instabilities due to any phase transition and is not a unique fingerprint of the hadron-quark matter transition. Rigid rotation of cold and hot stars, their moments of inertia and Kepler frequencies are also explored. The QMC-A model results are compared with two relativistic models, the chiral mean field model (CMF), and the generalized relativistic density functional with hyperons (GRDF-Y). Similarities and differences are discussed.
We present a selection of the first results obtained in a comprehensive calculation of ground state properties of even-even superheavy nuclei in the region of 96 < Z < 136 and 118 < N < 320 from the Quark-Meson-Coupling model (QMC). Ground state bind ing energies, the neutron and proton number dependence of quadrupole deformations and Q$_alpha$ values are reported for even-even nuclei with 100 < Z < 136 and compared with available experimental data and predictions of macro-microscopic models. Predictions of properties of nuclei, including Q$_alpha$ values, relevant for planning future experiments are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا