ﻻ يوجد ملخص باللغة العربية
M-dwarf stars are promising targets for identifying and characterizing potentially habitable planets. K2-3 is a nearby (45 pc), early-type M dwarf hosting three small transiting planets, the outermost of which orbits close to the inner edge of the stellar (optimistic) habitable zone. The K2-3 system is well suited for follow-up characterization studies aimed at determining accurate masses and bulk densities of the three planets. Using a total of 329 radial velocity measurements collected over 2.5 years with the HARPS-N and HARPS spectrographs and a proper treatment of the stellar activity signal, we aim to improve measurements of the masses and bulk densities of the K2-3 planets. We use our results to investigate the physical structure of the planets. We analyse radial velocity time series extracted with two independent pipelines by using Gaussian process regression. We adopt a quasi-periodic kernel to model the stellar magnetic activity jointly with the planetary signals. We use Monte Carlo simulations to investigate the robustness of our mass measurements of K2-3,c and K2-3,d, and to explore how additional high-cadence radial velocity observations might improve them. Despite the stellar activity component being the strongest signal present in the radial velocity time series, we are able to derive masses for both planet b ($M_{rm b}=6.6pm1.1$ $M_{rm oplus}$) and planet c ($M_{rm c}=3.1^{+1.3}_{-1.2}$ $M_{rm oplus}$). The Doppler signal due to K2-3,d remains undetected, likely because of its low amplitude compared to the radial velocity signal induced by the stellar activity. The closeness of the orbital period of K2-3,d to the stellar rotation period could also make the detection of the planetary signal complicated. [...]
K2 space observations recently found that three super-Earths transit the nearby M dwarf K2-3. The apparent brightness and the small physical radius of their host star rank these planets amongst the most favourable for follow-up characterisations. The
This paper reports on the validation and mass measurement of K2-263b, a sub-Neptune orbiting a quiet G9V star. Using K2 data from campaigns C5 and C16, we find this planet to have a period of $50.818947pm 0.000094$ days and a radius of $2.41pm0.12$ R
The Transiting Exoplanet Survey Satellite (textit{TESS}) mission was designed to perform an all-sky search of planets around bright and nearby stars. Here we report the discovery of two sub-Neptunes orbiting around the TOI 1062 (TIC 299799658), a V=1
[abridged] We analyse four transits of WASP-33b observed with the optical high-resolution HARPS-N spectrograph to confirm its nodal precession, study its atmosphere and investigate the presence of star-planet interactions.We extract the mean line pro
We present the detection and characterization of the two new transiting, close-in, giant extrasolar planets KOI-200b and KOI-889b. They were first identified by the Kepler team as promising candidates from photometry of the Kepler satellite, then we