ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal inventory management and order book modeling

68   0   0.0 ( 0 )
 نشر من قبل Bruno Bouchard
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the behavior of three agent classes acting dynamically in a limit order book of a financial asset. Namely, we consider market makers (MM), high-frequency trading (HFT) firms, and institutional brokers (IB). Given a prior dynamic of the order book, similar to the one considered in the Queue-Reactive models [14, 20, 21], the MM and the HFT define their trading strategy by optimizing the expected utility of terminal wealth, while the IB has a prescheduled task to sell or buy many shares of the considered asset. We derive the variational partial differential equations that characterize the value functions of the MM and HFT and explain how almost optimal control can be deduced from them. We then provide a first illustration of the interactions that can take place between these different market participants by simulating the dynamic of an order book in which each of them plays his own (optimal) strategy.



قيم البحث

اقرأ أيضاً

This article presents a Hawkes process model with Markovian baseline intensities for high-frequency order book data modeling. We classify intraday order book trading events into a range of categories based on their order types and the price changes a fter their arrivals. To capture the stimulating effects between multiple types of order book events, we use the multivariate Hawkes process to model the self- and mutually-exciting event arrivals. We also integrate a Markovian baseline intensity into the event arrival dynamic, by including the impacts of order book liquidity state and time factor to the baseline intensity. A regression-based non-parametric estimation procedure is adopted to estimate the model parameters in our Hawkes+Markovian model. To eliminate redundant model parameters, LASSO regularization is incorporated in the estimation procedure. Besides, model selection method based on Akaike Information Criteria is applied to evaluate the effect of each part of the proposed model. An implementation example based on real LOB data is provided. Through the example, we study the empirical shapes of Hawkes excitement functions, the effects of liquidity state as well as time factors, the LASSO variable selection, and the explanatory power of Hawkes and Markovian elements to the dynamics of the order book.
We consider optimal execution strategies for block market orders placed in a limit order book (LOB). We build on the resilience model proposed by Obizhaeva and Wang (2005) but allow for a general shape of the LOB defined via a given density function. Thus, we can allow for empirically observed LOB shapes and obtain a nonlinear price impact of market orders. We distinguish two possibilities for modeling the resilience of the LOB after a large market order: the exponential recovery of the number of limit orders, i.e., of the volume of the LOB, or the exponential recovery of the bid-ask spread. We consider both of these resilience modes and, in each case, derive explicit optimal execution strategies in discrete time. Applying our results to a block-shaped LOB, we obtain a new closed-form representation for the optimal strategy, which explicitly solves the recursive scheme given in Obizhaeva and Wang (2005). We also provide some evidence for the robustness of optimal strategies with respect to the choice of the shape function and the resilience-type.
We introduce a microscopic model for the dynamics of the order book to study how the lack of liquidity influences price fluctuations. We use the average density of the stored orders (granularity $g$) as a proxy for liquidity. This leads to a Price Im pact Surface which depends on both volume $omega$ and $g$. The dependence on the volume (averaged over the granularity) of the Price Impact Surface is found to be a concave power law function $<phi(omega,g)>_gsimomega^delta$ with $deltaapprox 0.59$. Instead the dependence on the granularity is $phi(omega,g|omega)sim g^alpha$ with $alphaapprox-1$, showing a divergence of price fluctuations in the limit $gto 0$. Moreover, even in intermediate situations of finite liquidity, this effect can be very large and it is a natural candidate for understanding the origin of large price fluctuations.
We investigate the statistical properties of the EBS order book for the EUR/USD and USD/JPY currency pairs and the impact of a ten-fold tick size reduction on its dynamics. A large fraction of limit orders are still placed right at or halfway between the old allowed prices. This generates price barriers where the best quotes lie for much of the time, which causes the emergence of distinct peaks in the average shape of the book at round distances. Furthermore, we argue that this clustering is mainly due to manual traders who remained set to the old price resolution. Automatic traders easily take price priority by submitting limit orders one tick ahead of clusters, as shown by the prominence of buy (sell) limit orders posted with rightmost digit one (nine).
We examine the dynamics of the bid and ask queues of a limit order book and their relationship with the intensity of trade arrivals. In particular, we study the probability of price movements and trade arrivals as a function of the quote imbalance at the top of the limit order book. We propose a stochastic model in an attempt to capture the joint dynamics of the top of the book queues and the trading process, and describe a semi-analytic approach to calculate the relative probability of market events. We calibrate the model using historical market data and discuss the quality of fit and practical applications of the results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا