ﻻ يوجد ملخص باللغة العربية
Just as Quantum Electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by exchange of photons, Quantum Chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by exchange of gluons. At face value, QCD allows hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, to not be present in nature. In what follows we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for building hadrons from QCD.
QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the Standard Model. A discovery and detailed study of instanton-generated processes at colliders would provide a new window into the phenomenological e
A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less config
We investigate the processes $e^+e^-$$to$$gamma J/psiphi$, $gamma J/psiomega$ and $pi^0 J/psieta$ to search for the charmnium-like states with hidden $sbar{s}$, such as $Y(4140)$, $Y(4274)$, $X(4350)$ and $X(3915)$. These processes will receive contr
We investigate the anomalous triangle singularity (ATS) and its possible manifestations in various processes. We show that the ATS should have important impact on our understanding of the nature of some newly observed threshold states. Discussions on
A spectrum of massive graviton states is present in several recent theoretical models that include extra space dimensions. In some such models the graviton states are well separated in mass, and can be detected as resonances in collider experiments.