ﻻ يوجد ملخص باللغة العربية
The extremal problems regarding the maximum possible size of intersecting families of various combinatorial objects have been extensively studied. In this paper, we investigate supersaturation extensions, which in this context ask for the minimum number of disjoint pairs that must appear in families larger than the extremal threshold. We study the minimum number of disjoint pairs in families of permutations and in $k$-uniform set families, and determine the structure of the optimal families. Our main tool is a removal lemma for disjoint pairs. We also determine the typical structure of $k$-uniform set families without matchings of size $s$ when $n ge 2sk + 38s^4$, and show that almost all $k$-uniform intersecting families on vertex set $[n]$ are trivial when $nge (2+o(1))k$.
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with
A family of perfect matchings of $K_{2n}$ is $intersecting$ if any two of its members have an edge in common. It is known that if $mathcal{F}$ is family of intersecting perfect matchings of $K_{2n}$, then $|mathcal{F}| leq (2n-3)!!$ and if equality h
We shall be interested in the following Erdos-Ko-Rado-type question. Fix some subset B of [n]. How large a family A of subsets of [n] can we find such that the intersection of any two sets in A contains a cyclic translate (modulo n) of B? Chung, Grah
A family of perfect matchings of $K_{2n}$ is $t$-$intersecting$ if any two members share $t$ or more edges. We prove for any $t in mathbb{N}$ that every $t$-intersecting family of perfect matchings has size no greater than $(2(n-t) - 1)!!$ for suffic
Let $mathcal{F}$ and $mathcal{G}$ be two $t$-uniform families of subsets over $[k] = {1,2,...,k}$, where $|mathcal{F}| = |mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $mathcal{F}$ and $mat