ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-evolution of galaxies and Active Galactic Nuclei

96   0   0.0 ( 0 )
 نشر من قبل Gianfranco De Zotti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supermassive black holes (SMBHs) have been found to be ubiquitous in the nuclei of early-type galaxies and of bulges of spirals. There are evidences of a tight correlation between the SMBH masses, the velocity dispersions of stars in the spheroidal components galaxies and other galaxy properties. Also the evolution of the luminosity density due to nuclear activity is similar to that due to star formation. All that suggests an evolutionary connection between Active Galactic Nuclei (AGNs) and their host galaxies. After a review of these evidences this lecture discusses how AGNs can affect the host galaxies. Other feedback processes advocated to account for the differences between the halo and the stellar mass functions are also briefly introduced.

قيم البحث

اقرأ أيضاً

Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spe ctral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.
151 - Ryan C. Hickox 2016
Our understanding of the cosmic evolution of supermassive black holes (SMBHs) has been revolutionized by the advent of large multiwavelength extragalactic surveys, which have enabled detailed statistical studies of the host galaxies and large-scale s tructures of active galactic nuclei (AGN). We give an overview of some recent results on SMBH evolution, including the connection between AGN activity and star formation in galaxies, the role of galaxy mergers in fueling AGN activity, the nature of luminous obscured AGN, and the connection between AGN and their host dark matter halos. We conclude by looking to the future of large-scale extragalactic X-ray and spectroscopic surveys.
131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret ion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
98 - K.I. Caputi 2014
The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for th e study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that it should be possible to address with forthcoming IR telescopes.
We report on the first phase of our study of cloud irradiation. We study irradiation by means of numerical, two-dimensional time-dependent radiation-hydrodynamic simulations of a cloud irradiated by a strong radiation. We adopt a very simple treatmen t of the opacity, neglect photoionization and gravity, and instead focus on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole instead they undergo a very rapid and major evolution in its shape, size and physical properties. In particular, the cloud and its remnants become optical thin within less than one sound crossing time and before they can travel over a significant distance (a distance of a few radii of the initial cloud). We also found that a cloud can be accelerated as a whole under quite extreme conditions, e.g., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small and unless the cloud is optically thin the cloud quickly changes its size and shape. We discuss implications for the modelling and interpetation broad line regions of active galactic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا