ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative transfer calculations of the diffuse ionised gas in disc galaxies with cosmic ray feedback

222   0   0.0 ( 0 )
 نشر من قبل Bert Vandenbroucke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large vertical scale heights of the diffuse ionised gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds (SILCC) project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionising sources to get an appropriate ionising spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

قيم البحث

اقرأ أيضاً

The diffuse ionized gas (DIG) is an important component of the interstellar medium that can provide insights into the different physical processes affecting the gas in galaxies. We utilise optical IFU observations of 71 gas-stripped and control galax ies from the Gas Stripping Phenomena in galaxies (GASP) survey, to analyze the gas properties of the dense ionized gas and the DIG, such as metallicity, ionization parameter log(q), and the difference between the measured $log[OI]/Halpha$ and the value predicted by star-forming models, given the measured log[OIII]/H$beta$ ($Delta log[OI]/Halpha$). We compare these properties at different spatial scales, among galaxies at different gas-stripping stages, and between disks and tails of the stripped galaxies. The metallicity is similar between the dense gas and DIG at a given galactocentric radius. The log(q) is lower for DIG compared to dense gas. The median values of log(q) correlate best with stellar mass, and the most massive galaxies show an increase in log(q) toward their galactic centers. The DIG clearly shows higher $Delta log[OI]/Halpha$ values compared to the dense gas, with much of the spaxels having LIER/LINER like emission. The DIG regions in the tails of highly stripped galaxies show the highest $Delta log[OI]/Halpha$, exhibit high values of log(q) and extend to large projected distances from star-forming areas (up to 10 kpc). We conclude that the DIG in the tails is at least partly ionized by a process other than star-formation, probably by mixing, shocks and accretion of inter-cluster and interstellar medium gas.
We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He$^+$, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of cosmic fossils such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.
We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models ca lculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined ($i gtrsim 85^{circ}$) and/or optically thick (central face-on optical depth $gtrsim1$) galaxy models, the approximation can give rise to substantial errors, sometimes, up to $gtrsim 40%$. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no simple recipe to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though its slower than the KB approximation.
There is strong evidence that the diffuse ionized gas (DIG) in disc galaxies is photoionized by radiation from UV luminous O and B stars in the galactic disc, both from observations and detailed numerical models. However, it is still not clear what m echanism is responsible for providing the necessary pressure support for a diffuse gas layer at kpc-scale above the disc. In this work we investigate if the pressure increase caused by photoionization can provide this support. We run self-consistent radiation hydrodynamics models of a gaseous disc in an external potential. We find that photoionization feedback can drive low levels of turbulence in the dense galactic disc, and that it provides pressure support for an extended diffuse gas layer. Our results show that there is a natural fine-tuning between the total ionizing radiation budget of the sources in the galaxy and the amount of gas in the different ionization phases of the ISM, and provide the first fully consistent radiation hydrodynamics model of the DIG.
We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-$Lstar$ starburst, and $Lstar$ gala xies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of $gamma$-ray emission from nearby and starburst galaxies. We reproduce the $gamma$-ray observations of dwarf and $Lstar$ galaxies with constant isotropic diffusion coefficient $kappa sim 3times 10^{29},{rm cm^{2},s^{-1}}$. Advection-only and streaming-only models produce order-of-magnitude too large $gamma$-ray luminosities in dwarf and $Lstar$ galaxies. We show that in models that match the $gamma$-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for $gamma$-ray emissivities. Models where CRs are ``trapped in the star-forming disk have lower star formation efficiency, but these models are ruled out by $gamma$-ray observations. For models with constant $kappa$ that match the $gamma$-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا