ترغب بنشر مسار تعليمي؟ اضغط هنا

On a Modified Klein-Gordon Equation with Vacuum-Energy Contributions

160   0   0.0 ( 0 )
 نشر من قبل Dor Gabay
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define a modified covariant Klein-Gordon (KG) equation containing quantum vacuum contributions arising from the self-interaction of matter with its own internal kinetic energy. The modified KG equation is exemplified for a variety of vacuum fields and various properties of the equation are articulated thereof. Generalized commutation and Energy-Momentum relations are characterized for a null vacuum-phase scenario of the proposed vacuum field $lambda$. Within this limited scenario, a representation theorem is introduced suggesting that one can equally modify the spacetime structure or momentum operator in articulating the proposed quantum theory. Such a modified KG equation is further shown to eliminate infrared and the ultraviolet divergences in the generalized Klein-Gordon propagator.



قيم البحث

اقرأ أيضاً

Hawkings singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawkings hypotheses, an important example being the massive Klein-Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein-Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein-Klein-Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete.
It is well known that the Klein-Gordon equation in curved spacetime is conformally noninvariant, both with and without a mass term. We show that such a noninvariance provides nontrivial physical insights at different levels, first within the fully re lativistic regime, then at the nonrelativistic regime leading to the Schrodinger equation, and then within the de Broglie-Bohm causal interpretation of quantum mechanics. The conformal noninvariance of the Klein-Gordon equation coupled to a vector potential is confronted with the conformal invariance of Maxwells equations in the presence of a charged current. The conformal invariance of the non-minimally coupled Klein-Gordon equation to gravity is then examined in light of the conformal invariance of Maxwells equations. Finally, the consequence of the noninvariance of the equation on the Aharonov-Bohm effect in curved spacetime is discussed. The issues that arise at each of these different levels are thoroughly analyzed.
In this paper we show that the Schrodinger-Newton equation for spherically symmetric gravitational fields can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon and Einstein-Dirac system.
145 - Elena Kopylova 2016
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group cor responding to the Coulomb potential, and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا