ترغب بنشر مسار تعليمي؟ اضغط هنا

3D modelling of self-organized patterns of spots on anodes of DC glow discharge

63   0   0.0 ( 0 )
 نشر من قبل Matthew Bieniek M S
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-organized patterns of spots on a at metallic anode in a cylindrical glow dis- charge tube are simulated self-consistently. A standard model of a glow discharge is used, comprising conservation and transport equations for a single species of ion and electrons, written with the use of the drift-diffusion and local-field approximations, and the Poisson equation. The computation domain is the region from the anode to the discharge column; only processes in the near-anode region are considered. Multiple solutions, existing in the same range of discharge current and describing modes with and without anode spots, are computed by means of a stationary solver. The computed spots exhibited unexpected behavior. A reversal of the local anode current density in the middle of each of the spots was found, i.e. mini-cathodes are formed inside the spots. The solutions do not fit into the conventional pattern of self-organization in bistable nonlinear dissipative systems; e.g. the modes are not joined by bifurcations.

قيم البحث

اقرأ أيضاً

Seven new 3D modes of self-organization in DC glow discharges are computed in the framework of the simplest self-consistent model of glow discharge. Some of the modes branch off from and rejoin the 1D mode, while others bifurcate from a 2D or a 3D mo de. The patterns associated with computed 3D modes are similar to patterns observed in the experiment. The computed transition from a spot pattern comprising five spots into a pattern comprising a ring spot also was observed in the experiment.
A pin liquid anode DC discharge is generated in open air without any additional gas feeding to form self-organized patterns (SOPs) on various liquid interfaces. Axially resolved emission spectra of the whole discharge reveal that the self-organized p atterns are formed below a dark region and are visible mainly due to the N2 transitions. The high energy N2 (C) level is mainly excited by the impact of electrons heated by the local increased electric field at the interface. For the first time, the effect of the liquid type on the SOP formation is presented. With almost the same other discharge conditions, the formed SOPs are significantly different from HCl and H2SO4 liquid anodes. The SOP difference is repeated when the discharge current and gap distance change for both liquid anodes. The variations of SOP size and discretization as a function of discharge current and gap distance are discussed and confirm that different SOPs are formed by the HCl liquid anode from tap water or the H2SO4 liquid anode. A possible explanation is brought up to explain the dependence of SOPs on the liquid type.
Self-organized patterns of cathode spots in glow discharges are computed in the cathode boundary layer geometry, which is the one employed in most of the experiments reported in the literature. The model comprises conservation and transport equations of electrons and a single ion species, written in the drift-diffusion and local-field approximations, and Poissons equation. Multiple solutions existing for the same value of the discharge current and describing modes with different configurations of cathode spots are computed by means of a stationary solver. The computed solutions are compared to their counterparts for plane-parallel electrodes, and experiments. All of the computed spot patterns have been observed in the experiment.
An interesting aspect of complex plasma is its ability to self-organize into a variety of structural configurations and undergo transitions between these states. A striking phenomenon is the isotropic-to-string transition observed in electrorheologic al complex plasma under the influence of a symmetric ion wakefield. Such transitions have been investigated using the Plasma Kristall-4 (PK-4) microgravity laboratory on the International Space Station (ISS). Recent experiments and numerical simulations have shown that, under PK-4 relevant discharge conditions, the seemingly homogeneous DC discharge column is highly inhomogeneous, with large axial electric field oscillations associated with ionization waves occurring on microsecond time scales. A multi-scale numerical model of the dust-plasma interactions is employed to investigate the role of the electric field on the charge of individual dust grains, the ion wakefield, and the order of string-like structures. Results are compared to dust strings formed in similar conditions in the PK-4 experiment.
136 - Zhong Xu , Jun Huang , Zaifeng Xu 2020
Plasma Surface Metallurgy/Alloying is a kind of surface metallurgy/alloying to employ low temperature plasma produced by glow discharge to diffuse alloying elements into the surface of substrate material to form an alloy layer. The first plasma surfa ce metallurgy technology is plasma nitriding invented by German scientist Dr. Bernard Berghuas in 1930. He was the first person to apply glow discharge to realize the surface alloying. In order to break the limitation of plasma nitriding technology, which can only be applied to a few non-metallic gaseous elements such as nitrogen, carbon, sulfur, the Double Glow Discharge Phenomenonwas found in 1978. Based on this phenomenon the Double Glow Plasma Surface Metallurgy Technology, also known as the Xu-Tec Process was invented in 1980. It can utilize any chemical elements in the periodic table including solid metallic, gas non-metallic elements and their combination to realize plasma surface alloying, hence greatly expanded the field of surface alloying. Countless surface alloys with high hardness, wear resistance and corrosion resistance, such as high speed steels, nickel base alloys and burn resistant alloys have been produced on the surfaces of a variety of materials. This technology may greatly improve the surface properties of metal materials, comprehensively improve the quality of mechanical products, save a lot of precious alloy elements for human beings. Based on the plasma nitriding technology, the Xu-Tec Process has opened up a new material engineering field of Plasma Surface Metallurgy. This Review Article briefly presents the history of glow discharge and surface alloying, double glow discharge phenomenon, basic principle and current status of Double Glow Plasma Surface Metallurgy/Alloying. Industrial applications, advantages and future potential of the Xu-Tec process are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا