ﻻ يوجد ملخص باللغة العربية
In times of more and more complex interaction techniques, we point out the powerfulness of colored light as a simple and cheap feedback mechanism. Since it is visible over a distance and does not interfere with other modalities, it is especially interesting for mobile robots. In an online survey, we asked 56 participants to choose the most appropriate colors for scenarios that were presented in the form of videos. In these scenarios a mobile robot accomplished tasks, in some with success, in others it failed because the task is not feasible, in others it stopped because it waited for help. We analyze in what way the color preferences differ between these three categories. The results show a connection between colors and meanings and that it depends on the participants technical affinity, experience with robots and gender how clear the color preference is for a certain category. Finally, we found out that the participants favorite color is not related to color preferences.
We design and develop a new shared Augmented Reality (AR) workspace for Human-Robot Interaction (HRI), which establishes a bi-directional communication between human agents and robots. In a prototype system, the shared AR workspace enables a shared p
This record contains the proceedings of the 2020 Workshop on Assessing, Explaining, and Conveying Robot Proficiency for Human-Robot Teaming, which was held in conjunction with the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI
We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) data set. This is a large multimodal data set of human interactions with a robotic arm in a shared autonomy setting designed to imitate assistive e
Human-robot interaction can be regarded as a flow between users and robots. Designing good interaction flows takes a lot of effort and needs to be field tested. Unfortunately, the interaction flow design process is often very disjointed, with users e
We describe a multi-phased Wizard-of-Oz approach to collecting human-robot dialogue in a collaborative search and navigation task. The data is being used to train an initial automated robot dialogue system to support collaborative exploration tasks.