ترغب بنشر مسار تعليمي؟ اضغط هنا

Perfect powers that are sums of squares in a three term arithmetic progression

84   0   0.0 ( 0 )
 نشر من قبل Angelos Koutsianas
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine primitive solutions to the equation $(x-r)^2 + x^2 + (x+r)^2 = y^n$ for $1 le r le 5,000$, making use of a factorization argument and the Primitive Divisors Theorem due to Bilu, Hanrot and Voutier.

قيم البحث

اقرأ أيضاً

In this paper we determine the perfect powers that are sums of three fifth powers in an arithmetic progression. More precisely, we completely solve the Diophantine equation $$ (x-d)^5 + x^5 + (x + d)^5 = z^n,~ngeq 2, $$ where $d,x,z in mathbb{Z}$ and $d = 2^a5^b$ with $a,bgeq 0$.
83 - David Lowry-Duda 2021
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher and Murty, we show that there are at least $X^{frac{1}{4} - epsilon}$ sign changes in each interval $[X, 2X]$ for $X gg 1$. This improves to $X^{frac{1}{2} - epsilon}$ many sign changes assuming the Generalized Lindel{o}f Hypothesis.
204 - Koji Momihara 2020
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the multiplicative character involved. A complete solution to the problem of evaluating index $2$ Gauss sums was given by Yang and Xia~(2010). In particular, it is known that some nonzero integral powers of the Gauss sums in this case are in quadratic fields. On the other hand, Chowla~(1962), McEliece~(1974), Evans~(1977, 1981) and Aoki~(1997, 2004, 2012) studied {it pure} Gauss sums, some nonzero integral powers of which are in the field of rational numbers. In this paper, we study Gauss sums, some integral powers of which are in quadratic fields. This class of Gauss sums is a generalization of index $2$ Gauss sums and an extension of pure Gauss sums to quadratic fields.
115 - Yue-Feng She , Hai-Liang Wu 2020
In 2016, while studying restricted sums of integral squares, Sun posed the following conjecture: Every positive integer $n$ can be written as $x^2+y^2+z^2+w^2$ $(x,y,z,winmathbb{N}={0,1,cdots})$ with $x+3y$ a square. Meanwhile, he also conjectured th at for each positive integer $n$ there exist integers $x,y,z,w$ such that $n=x^2+y^2+z^2+w^2$ and $x+3yin{4^k:kinmathbb{N}}$. In this paper, we confirm these conjectures via some arithmetic theory of ternary quadratic forms.
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا