ﻻ يوجد ملخص باللغة العربية
We determine primitive solutions to the equation $(x-r)^2 + x^2 + (x+r)^2 = y^n$ for $1 le r le 5,000$, making use of a factorization argument and the Primitive Divisors Theorem due to Bilu, Hanrot and Voutier.
In this paper we determine the perfect powers that are sums of three fifth powers in an arithmetic progression. More precisely, we completely solve the Diophantine equation $$ (x-d)^5 + x^5 + (x + d)^5 = z^n,~ngeq 2, $$ where $d,x,z in mathbb{Z}$ and $d = 2^a5^b$ with $a,bgeq 0$.
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the
In 2016, while studying restricted sums of integral squares, Sun posed the following conjecture: Every positive integer $n$ can be written as $x^2+y^2+z^2+w^2$ $(x,y,z,winmathbb{N}={0,1,cdots})$ with $x+3y$ a square. Meanwhile, he also conjectured th
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.