ترغب بنشر مسار تعليمي؟ اضغط هنا

Reachable Set Estimation and Safety Verification for Piecewise Linear Systems with Neural Network Controllers

84   0   0.0 ( 0 )
 نشر من قبل Weiming Xiang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, the reachable set estimation and safety verification problems for a class of piecewise linear systems equipped with neural network controllers are addressed. The neural network is considered to consist of Rectified Linear Unit (ReLU) activation functions. A layer-by-layer approach is developed for the output reachable set computation of ReLU neural networks. The computation is formulated in the form of a set of manipulations for a union of polytopes. Based on the output reachable set for neural network controllers, the output reachable set for a piecewise linear feedback control system can be estimated iteratively for a given finite-time interval. With the estimated output reachable set, the safety verification for piecewise linear systems with neural network controllers can be performed by checking the existence of intersections of unsafe regions and output reach set. A numerical example is presented to illustrate the effectiveness of our approach.



قيم البحث

اقرأ أيضاً

Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This pa per develops methods for estimating the reachable set and verifying safety properties of dynamical systems under control of neural network-based controllers that may be implemented in embedded software. The neural network controllers we consider are feedforward neural networks called multilayer perceptrons (MLP) with general activation functions. As such feedforward networks are memoryless, they may be abstractly represented as mathematical functions, and the reachability analysis of the network amounts to range (image) estimation of this function provided a set of inputs. By discretizing the input set of the MLP into a finite number of hyper-rectangular cells, our approach develops a linear programming (LP) based algorithm for over-approximating the output set of the MLP with its input set as a union of hyper-rectangular cells. Combining the over-approximation for the output set of an MLP based controller and reachable set computation routines for ordinary difference/differential equation (ODE) models, an algorithm is developed to estimate the reachable set of the closed-loop system. Finally, safety verification for neural network control systems can be performed by checking the existence of intersections between the estimated reachable set and unsafe regions. The approach is implemented in a computational software prototype and evaluated on numerical examples.
Neural networks have been widely used to solve complex real-world problems. Due to the complicate, nonlinear, non-convex nature of neural networks, formal safety guarantees for the output behaviors of neural networks will be crucial for their applica tions in safety-critical systems.In this paper, the output reachable set computation and safety verification problems for a class of neural networks consisting of Rectified Linear Unit (ReLU) activation functions are addressed. A layer-by-layer approach is developed to compute output reachable set. The computation is formulated in the form of a set of manipulations for a union of polyhedra, which can be efficiently applied with the aid of polyhedron computation tools. Based on the output reachable set computation results, the safety verification for a ReLU neural network can be performed by checking the intersections of unsafe regions and output reachable set described by a union of polyhedra. A numerical example of a randomly generated ReLU neural network is provided to show the effectiveness of the approach developed in this paper.
In this paper, the output reachable estimation and safety verification problems for multi-layer perceptron neural networks are addressed. First, a conception called maximum sensitivity in introduced and, for a class of multi-layer perceptrons whose a ctivation functions are monotonic functions, the maximum sensitivity can be computed via solving convex optimization problems. Then, using a simulation-based method, the output reachable set estimation problem for neural networks is formulated into a chain of optimization problems. Finally, an automated safety verification is developed based on the output reachable set estimation result. An application to the safety verification for a robotic arm model with two joints is presented to show the effectiveness of proposed approaches.
We present a method for computing exact reachable sets for deep neural networks with rectified linear unit (ReLU) activation. Our method is well-suited for use in rigorous safety analysis of robotic perception and control systems with deep neural net work components. Our algorithm can compute both forward and backward reachable sets for a ReLU network iterated over multiple time steps, as would be found in a perception-action loop in a robotic system. Our algorithm is unique in that it builds the reachable sets by incrementally enumerating polyhedral cells in the input space, rather than iterating layer-by-layer through the network as in other methods. If an unsafe cell is found, our algorithm can return this result without completing the full reachability computation, thus giving an anytime property that accelerates safety verification. In addition, our method requires less memory during execution compared to existing methods where memory can be a limiting factor. We demonstrate our algorithm on safety verification of the ACAS Xu aircraft advisory system. We find unsafe actions many times faster than the fastest existing method and certify no unsafe actions exist in about twice the time of the existing method. We also compute forward and backward reachable sets for a learned model of pendulum dynamics over a 50 time step horizon in 87s on a laptop computer. Algorithm source code: https://github.com/StanfordMSL/Neural-Network-Reach.
The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neura l network components at various stages of sensing and control. This paper addresses the reachable set estimation and safety verification problems for dynamical systems embedded with neural network components serving as feedback controllers. The closed-loop system can be abstracted in the form of a continuous-time sampled-data system under the control of a neural network controller. First, a novel reachable set computation method in adaptation to simulations generated out of neural networks is developed. The reachability analysis of a class of feedforward neural networks called multilayer perceptrons (MLP) with general activation functions is performed in the framework of interval arithmetic. Then, in combination with reachability methods developed for various dynamical system classes modeled by ordinary differential equations, a recursive algorithm is developed for over-approximating the reachable set of the closed-loop system. The safety verification for neural network control systems can be performed by examining the emptiness of the intersection between the over-approximation of reachable sets and unsafe sets. The effectiveness of the proposed approach has been validated with evaluations on a robotic arm model and an adaptive cruise control system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا