ﻻ يوجد ملخص باللغة العربية
In this work, the reachable set estimation and safety verification problems for a class of piecewise linear systems equipped with neural network controllers are addressed. The neural network is considered to consist of Rectified Linear Unit (ReLU) activation functions. A layer-by-layer approach is developed for the output reachable set computation of ReLU neural networks. The computation is formulated in the form of a set of manipulations for a union of polytopes. Based on the output reachable set for neural network controllers, the output reachable set for a piecewise linear feedback control system can be estimated iteratively for a given finite-time interval. With the estimated output reachable set, the safety verification for piecewise linear systems with neural network controllers can be performed by checking the existence of intersections of unsafe regions and output reach set. A numerical example is presented to illustrate the effectiveness of our approach.
Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This pa
Neural networks have been widely used to solve complex real-world problems. Due to the complicate, nonlinear, non-convex nature of neural networks, formal safety guarantees for the output behaviors of neural networks will be crucial for their applica
In this paper, the output reachable estimation and safety verification problems for multi-layer perceptron neural networks are addressed. First, a conception called maximum sensitivity in introduced and, for a class of multi-layer perceptrons whose a
We present a method for computing exact reachable sets for deep neural networks with rectified linear unit (ReLU) activation. Our method is well-suited for use in rigorous safety analysis of robotic perception and control systems with deep neural net
The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neura