ﻻ يوجد ملخص باللغة العربية
We show that the minimal base size $b(G)$ of a finite primitive permutation group $G$ of degree $n$ is at most $2 (log |G|/log n) + 24$. This bound is asymptotically best possible since there exists a sequence of primitive permutation groups $G$ of degrees $n$ such that $b(G) = lfloor 2 (log |G|/log n) rceil - 2$ and $b(G)$ is unbounded. As a corollary we show that a primitive permutation group of degree $n$ that does not contain the alternating group $mathrm{Alt}(n)$ has a base of size at most $max{sqrt{n} , 25}$.
In this paper we study finite semiprimitive permutation groups, that is, groups in which each normal subgroup is transitive or semiregular. We give bounds on the order, base size, minimal degree, fixity, and chief length of an arbitrary finite semipr
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can st
Every synchronising permutation group is primitive and of one of three types: affine, almost simple, or diagonal. We exhibit the first known example of a synchronising diagonal type group. More precisely, we show that $mathrm{PSL}(2,q)times mathrm{PS
It is proved that, for a prime $p>2$ and integer $ngeq 1$, finite $p$-groups of nilpotency class $3$ and having only two conjugacy class sizes $1$ and $p^n$ exist if and only if $n$ is even; moreover, for a given even positive integer, such a group i
Let $G$ be a finite group and $Irr(G)$ the set of irreducible complex characters of $G$. Let $e_p(G)$ be the largest integer such that $p^{e_p(G)}$ divides $chi(1)$ for some $chi in Irr(G)$. We show that $|G:mathbf{F}(G)|_p leq p^{k e_p(G)}$ for a co