ترغب بنشر مسار تعليمي؟ اضغط هنا

Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

174   0   0.0 ( 0 )
 نشر من قبل Roman Kovalchukov
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability.



قيم البحث

اقرأ أيضاً

To date, model-based reliable communication with low latency is of paramount importance for time-critical wireless control systems. In this work, we study the downlink (DL) controller-to-actuator scheduling problem in a wireless industrial network su ch that the outage probability is minimized. In contrast to the existing literature based on well-known stationary fading channel models, we assume an arbitrary and unknown channel fading model, which is available only via samples. To overcome the issue of limited data samples, we invoke the generative adversarial network framework and propose an online data-driven approach to jointly schedule the DL transmissions and learn the channel distributions in an online manner. Numerical results show that the proposed approach can effectively learn any arbitrary channel distribution and further achieve the optimal performance by using the predicted outage probability.
Due to explosive growth of online video content in mobile wireless networks, in-network caching is becoming increasingly important to improve the end-user experience and reduce the Internet access cost for mobile network operators. However, caching i s a difficult problem due to the very large number of online videos and video requests,limited capacity of caching nodes, and limited bandwidth of in-network links. Existing solutions that rely on static configurations and average request arrival rates are insufficient to handle dynamic request patterns effectively. In this paper, we propose a dynamic collaborative video caching framework to be deployed in mobile networks. We decompose the caching problem into a content placement subproblem and a source-selection subproblem. We then develop SRS (System capacity Reservation Strategy) to solve the content placement subproblem, and LinkShare, an adaptive traffic-aware algorithm to solve the source selection subproblem. Our framework supports congestion avoidance and allows merging multiple requests for the same video into one request. We carry extensive simulations to validate the proposed schemes. Simulation results show that our SRS algorithm achieves performance within 1-3% of the optimal values and LinkShare significantly outperforms existing solutions.
In heterogeneous cellular network, task scheduling for computation offloading is one of the biggest challenges. Most works focus on alleviating heavy burden of macro base stations by moving the computation tasks on macro-cell user equipment (MUE) to remote cloud or small-cell base stations. But the selfishness of network users is seldom considered. Motivated by the cloud edge computing, this paper provides incentive for task transfer from macro cell users to small cell base stations. The proposed incentive scheme utilizes small cell user equipment to provide relay service. The problem of computation offloading is modelled as a two-stage auction, in which the remote MUEs with common social character can form a group and then buy the computation resource of small-cell base stations with the relay of small cell user equipment. A two-stage auction scheme named TARCO is contributed to maximize utilities for both sellers and buyers in the network. The truthful, individual rationality and budget balance of the TARCO are also proved in this paper. In addition, two algorithms are proposed to further refine TARCO on the social welfare of the network. Extensive simulation results demonstrate that, TARCO is better than random algorithm by about 104.90% in terms of average utility of MUEs, while the performance of TARCO is further improved up to 28.75% and 17.06% by the proposed two algorithms, respectively.
Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded contr ollers link these `things to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.
60 - Yana Qin , Danye Wu , Zhiwei Xu 2020
To enhance the quality and speed of data processing and protect the privacy and security of the data, edge computing has been extensively applied to support data-intensive intelligent processing services at edge. Among these data-intensive services, ensemble learning-based services can in natural leverage the distributed computation and storage resources at edge devices to achieve efficient data collection, processing, analysis. Collaborative caching has been applied in edge computing to support services close to the data source, in order to take the limited resources at edge devices to support high-performance ensemble learning solutions. To achieve this goal, we propose an adaptive in-network collaborative caching scheme for ensemble learning at edge. First, an efficient data representation structure is proposed to record cached data among different nodes. In addition, we design a collaboration scheme to facilitate edge nodes to cache valuable data for local ensemble learning, by scheduling local caching according to a summarization of data representations from different edge nodes. Our extensive simulations demonstrate the high performance of the proposed collaborative caching scheme, which significantly reduces the learning latency and the transmission overhead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا