ﻻ يوجد ملخص باللغة العربية
Microbial electrolysis cells (MECs) are a promising new technology for producing hydrogen cheaply, efficiently, and sustainably. However, to scale up this technology, we need a better understanding of the processes in the devices. In this effort, we present a differential-algebraic equation (DAE) model of a microbial electrolysis cell with an algebraic constraint on current. We then perform sensitivity and bifurcation analysis for the DAE system. The model can be applied either to batch-cycle MECs or to continuous-flow MECs. We conduct differential-algebraic sensitivity analysis after fitting simulations to current density data for a batch-cycle MEC. The sensitivity analysis suggests which parameters have the greatest influence on the current density at particular times during the experiment. In particular, growth and consumption parameters for exoelectrogenic bacteria have a strong effect prior to the peak current density. An alternative strategy to maximizing peak current density is maintaining a long term stable equilibrium with non-zero current density in a continuous-flow MEC. We characterize the minimum dilution rate required for a stable nonzero current equilibrium and demonstrate transcritical bifurcations in the dilution rate parameter that exchange stability between several curves of equilibria. Specifically, increasing the dilution rate transitions the system through three regimes where the stable equilibrium exhibits (i) competitive exclusion by methanogens, (ii) coexistence, and (iii) competitive exclusion by exolectrogens. Positive long term current production is only feasible in the final two regimes. These results suggest how to modify system parameters to increase peak current density in a batch-cycle MEC or to increase the long term current density equilibrium value in a continuous-flow MEC.
Microbial electrolysis cells (MECs) employ electroactive bacteria to perform extracellular electron transfer, enabling hydrogen generation from biodegradable substrates. In previous work, we developed and analyzed a differential-algebraic equation (D
We study a mathematical model describing the dynamics of a pluripotent stem cell population involved in the blood production process in the bone marrow. This model is a differential equation with a time delay. The delay describes the cell cycle durat
We establish the existence of a bifurcation from an attractive random equilibrium to shear-induced chaos for a stochastically driven limit cycle, indicated by a change of sign of the first Lyapunov exponent. This addresses an open problem posed by Ke
We discuss how matrix-free/timestepper algorithms can efficiently be used with dynamic non-Newtonian fluid mechanics simulators in performing systematic stability/bifurcation analysis. The timestepper approach to bifurcation analysis of large scale s
Certain migratory birds can sense the earths magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally `see the local magnetic field: Our model relates the well-es