ﻻ يوجد ملخص باللغة العربية
Manipulating quantum state via electrostatic gating has been intriguing for many model systems in nanoelectronics. When it comes to the question of controlling the electron spins, more specifically, the magnetism of a system, tuning with electric field has been proven to be elusive. Recently, magnetic layered semiconductors have attracted much attention due to their emerging new physical phenomena. However, challenges still remain in the demonstration of a gate controllable magnetism based on them. Here, we show that, via ionic gating, strong field effect can be observed in few-layered semiconducting Cr$_{2}$Ge$_{2}$Te$_{6}$ devices. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment re-balance in the spin-polarized band structure. Our findings of electric-field controlled magnetism in van der Waals magnets pave the way for potential applications in new generation magnetic memory storage, sensors, and spintronics.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag
Magnetic phase transitions often occur spontaneously at specific critical temperatures. The presence of more than one critical temperature (Tc) has been observed in several compounds where the coexistence of competing magnetic orders highlights the i
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
Two-dimensional van der Waals MnBi$_{2n}$Te$_{3n+1}$ (n = 1, 2, 3, 4) compounds have been recently found to be intrinsic magnetic topological insulators rendering quantum anomalous Hall effect and diverse topological states. Here, we summarize and co
Atomically thin chromium triiodide (CrI3) has recently been identified as a layered antiferromagnetic insulator, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. This unusual magnetic structure naturally comprises a serie