ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential and spin-exchange interaction between Anderson impurities in graphene

76   0   0.0 ( 0 )
 نشر من قبل Megha Agarwal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effective interaction between resonant magnetic Anderson impurities in graphene, mediated by conduction electrons, is studied as a function of the strength of the onsite energy level of the impurities and the amplitude of coupling to conduction electrons. The sign and character of the interaction depend on whether the impurities reside on the same or opposite sublattices. For the same (opposite) sublattice, the potential interaction is attractive (repulsive) in the weak coupling limit with $1/R^3$ dependence on the distance; the interaction reverses sign and becomes repulsive (attractive) in the strong coupling limit and displays $1/R$ behavior. The spin-exchange coupling is ferromagnetic (antiferromagnetic) at both large and small distances, but reverses sign and becomes anti-ferromagnetic (ferromagnetic) for intermediate distances. For opposite sublattices, the effective spin exchange coupling is resonantly enhanced at distances where the energy levels cross the Dirac points.

قيم البحث

اقرأ أيضاً

The effective spin exchange coupling between impurities (adatoms) on graphene mediated by conduction electrons is studied as a function of the strength of the potential part of the on-site energy $U$ of the electron-adatom interaction. With increasin g $U$, the exchange coupling becomes long-range, determined largely by the impurity levels with energies close to the Dirac points. When adatoms reside on opposite sublattices, their exchange coupling, normally antiferromagnetic, becomes ferromagnetic and resonantly enhanced at a specific distance where an impurity level crosses the Dirac point.
Using first-principles calculations we demonstrate sizable exchange coupling between a magnetic molecule and a magnetic substrate via a graphene layer. As a model system we consider cobaltocene (CoCp$_2$) adsorbed on graphene deposited on Ni(111). We find that the magnetic coupling between the molecule and the substrate is antiferromagnetic and varies considerably depending on the molecule structure, the adsorption geometry, and the stacking of graphene on Ni(111). We show how this coupling can be tuned by intercalating a magnetic monolayer, e.g. Fe or Co, between graphene and Ni(111). We identify the leading mechanism responsible for the coupling to be the spatial and energy matching of the frontier orbitals of CoCp$_2$ and graphene close to the Fermi level, and we demonstrate the role of graphene as an electronic decoupling layer, yet allowing spin communication between molecule and substrate.
Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.
The (111) surface of noble metals is usually treated as an isolated two dimensional (2D) triangular lattice completely decoupled from the bulk. However, unlike topological insulators, other bulk bands cross the Fermi level. We here introduce an effec tive tight-binding model that accurately reproduces results from first principles calculations, accounting for both surface and bulk states. We numerically solve the many-body problem of two quantum impurities sitting on the surface by means of the density matrix renormalization group. By performing simulations in a star geometry, we are able to study the non-perturbative problem in the thermodynamic limit with machine precision accuracy. We find that there is a non-trivial competition between Kondo and RKKY physics and as a consequence, ferromagnetism is never developed, except at short distances. The bulk introduces a variation in the period of the RKKY interactions, and therefore the problem departs considerably from the simpler 2D case. In addition, screening, and the magnitude of the effective indirect exchange is enhanced by the contributions from the bulk states.
We present first principles calculations of the exchange interactions between magnetic impurities deposited on (001), (110) and (111) surfaces of Cu and Au and analyze them, in particular, in the asymptotic regime. For the (110) and the (111) surface s we demonstrate that the interaction shows an oscillatory behavior as a function of the distance, R, of the impurities and that the amplitude of the oscillations decays as 1/R^2. Furthermore, the frequency of the oscillations is closely related to the length of the Fermi vector of the surface states existing on these surfaces. Due to the asymmetry of the the surface states dispersion, the frequency of the oscillations becomes also asymmetric on the (110) surfaces, while on the Au(111) surface two distinct frequencies are found in the oscillations as a consequence of the Bychkov-Rashba splitting of the surface states. Remarkably, no long range oscillations of the exchange interaction are observed for the (001) surfaces where the surface states are unoccupied. When burying the impurities beneath the surface layer, oscillations mediated by the bulk states become visible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا