ترغب بنشر مسار تعليمي؟ اضغط هنا

A cooling neutron star crust after recurrent outbursts: Modelling the accretion outburst history of Aql X-1

70   0   0.0 ( 0 )
 نشر من قبل Laura Sofie Ootes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With our neutron star crust cooling code {tt NSCool} we track the thermal evolution of the neutron star in Aql X-1 over the full accretion outburst history from 1996 until 2015. For the first time, we model many outbursts (23 outbursts were detected) collectively and in great detail. This allows us to investigate the influence of previous outbursts on the internal temperature evolution and to test different neutron star crust cooling scenarios. Aql X-1 is an ideal test source for this purpose, because it shows frequent, short outbursts and thermally dominated quiescence spectra. The source goes into outburst roughly once a year for a few months. Assuming that the quiescent {it Swift}/XRT observations of Aql X-1 can be explained within the crust cooling scenario (Waterhouse et al. 2016), we find three main conclusions. Firstly, the data are well reproduced by our model if the envelope composition and shallow heating parameters are allowed to change between outbursts. This is not the case if both shallow heating parameters (strength and depth) are tied throughout all accretion episodes, supporting earlier results that the properties of the shallow heating mechanism are not constant between outbursts. Second, from our models shallow heating could not be connected to one specific spectral state during outburst. Third, and most importantly, we find that the neutron star in Aql X-1 does not have enough time between outbursts to cool down to crust-core equilibrium and that heating during one outburst influences the cooling curves of the next.



قيم البحث

اقرأ أيضاً

The structure and composition of the crust of neutron stars plays an important role in their thermal and magnetic evolution, hence in setting their observational properties. One way to study the crust properties is to measure how it cools after it ha s been heated during an accretion outburst in a low-mass X-ray binary (LMXB). Such studies have shown that there is a tantalizing source of heat, of currently unknown origin, that is located in the outer layers of the crust and has a strength that varies between different sources and different outbursts. With the aim of understanding the mechanism behind this shallow heating, we present Chandra and Swift observations of the neutron star LMXB Aql X-1, obtained after its bright 2016 outburst. We find that the neutron star temperature was initially much lower, and started to decrease at much later time, than observed after the 2013 outburst of the source, despite the fact that the properties of the two outbursts were very similar. Comparing our data to thermal evolution simulations, we infer that the depth and magnitude of shallow heating must have been much larger during the 2016 outburst than during the 2013 one. This implies that basic neutron star parameters that do not change between outbursts, do not play a strong role in shallow heating. Furthermore, it suggests that outbursts with a similar accretion morphology can give rise to very different shallow heating. We also discuss alternative explanations for the difference in quiescent evolution after the 2016 outburst.
Using a theoretical model, we track the thermal evolution of a cooling neutron star crust after an accretion induced heating period with the goal of constraining the crustal parameters. We present for the first time a crust cooling model $-text{ } NS Cooltext{ } -$ that takes into account detailed variability during the full outburst based on the observed light curve. We apply our model to KS 1731-260. The source was in outburst for $sim$12 years during which it was observed to undergo variations on both long (years) and short (days-weeks) timescales. Our results show that KS 1731-260 does not reach a steady state profile during the outburst due to fluctuations in the derived accretion rate. Additionally, long time-scale outburst variability mildly affects the complete crust cooling phase, while variations in the final months of the outburst strongly influence the first $sim$40 days of the calculated cooling curve. We discuss the consequences for estimates of the neutron star crust parameters, and argue that detailed modelling of the final phase of the outburst is key to constraining the origin of the shallow heat source.
In accreting neutron star X-ray transients, the neutron star crust can be substantially heated out of thermal equilibrium with the core during an accretion outburst. The observed subsequent cooling in quiescence (when accretion has halted) offers a u nique opportunity to study the structure and thermal properties of the crust. Initially crust cooling modelling studies focussed on transient X-ray binaries with prolonged accretion outbursts (> 1 year) such that the crust would be significantly heated for the cooling to be detectable. Here we present the results of applying a theoretical model to the observed cooling curve after a short accretion outburst of only ~10 weeks. In our study we use the 2010 outburst of the transiently accreting 11 Hz X-ray pulsar in the globular cluster Terzan 5. Observationally it was found that the crust in this source was still hot more than 4 years after the end of its short accretion outburst. From our modelling we found that such a long-lived hot crust implies some unusual crustal properties such as a very low thermal conductivity (> 10 times lower than determined for the other crust cooling sources). In addition, we present our preliminary results of the modelling of the ongoing cooling of the neutron star in MXB 1659-298. This transient X-ray source went back into quiescence in March 2017 after an accretion phase of ~1.8 years. We compare our predictions for the cooling curve after this outburst with the cooling curve of the same source obtained after its previous outburst which ended in 2001.
The transient neutron star (NS) low-mass X-ray binary MAXI J0556$-$332 provides a rare opportunity to study NS crust heating and subsequent cooling for multiple outbursts of the same source. We examine {it MAXI}, {it Swift}, {it Chandra}, and {it XMM -Newton} data of MAXI J0556$-$332 obtained during and after three accretion outbursts of different durations and brightness. We report on new data obtained after outburst III. The source has been tracked up to $sim$1800 d after the end of outburst I. Outburst I heated the crust strongly, but no significant reheating was observed during outburst II. Cooling from $sim$333 eV to $sim$146 eV was observed during the first $sim$1200 d. Outburst III reheated the crust up to $sim$167 eV, after which the crust cooled again to $sim$131 eV in $sim$350 d. We model the thermal evolution of the crust and find that this source required a different strength and depth of shallow heating during each of the three outbursts. The shallow heating released during outburst I was $sim$17 MeV nucleon$^{-1}$ and outburst III required $sim$0.3 MeV nucleon$^{-1}$. These cooling observations could not be explained without shallow heating. The shallow heating for outburst II was not well constrained and could vary from $sim$0--2.2 MeV nucleon$^{-1}$, i.e., this outburst could in principle be explained without invoking shallow heating. We discuss the nature of the shallow heating and why it may occur at different strengths and depths during different outbursts.
A number of studies have revealed variability from neutron star low-mass X-ray binaries during quiescence. Such variability is not well characterised, or understood, but may be a common property that has been missed due to lack of multiple observatio ns. One such source where variability has been observed is Aql X-1. Here, we analyse 14 Chandra and XMM-Newton observations of Aql X-1 in quiescence, covering a period of approximately 2 years. There is clear variability between the epochs, with the most striking feature being a flare-like increase in the flux by a factor of 5. Spectral fitting is inconclusive as to whether the power-law and/or thermal component is variable. We suggest that the variability and flare-like behaviour during quiescence is due to accretion at low rates which might reach the neutron star surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا