ﻻ يوجد ملخص باللغة العربية
We evaluate Hankel determinants of matrices in which the entries are generating functions for paths consisting of up-steps, down-steps and level steps with a fixed starting point but variable end point. By specialisation, these determinant evaluations have numerous corollaries. In particular, one consequence is that the Hankel determinant of Motzkin prefix numbers equals 1, regardless of the size of the Hankel matrix.
We derive Legendre polynomials using Cauchy determinants with a generalization to power functions with real exponents greater than -1/2. We also provide a geometric formulation of Gram-Schmidt orthogonalization using the Hodge star operator.
Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
Motivated by a partition inequality of Bessenrodt and Ono, we obtain analogous inequalities for $k$-colored partition functions $p_{-k}(n)$ for all $kgeq2$. This enables us to extend the $k$-colored partition function multiplicatively to a function o
Divide-and-conquer functions satisfy equations in F(z),F(z^2),F(z^4)... Their generated sequences are mainly used in computer science, and they were analyzed pragmatically, that is, now and then a sequence was picked out for scrutiny. By giving sever
We study plane partitions satisfying condition $a_{n+1,m+1}=0$ (this condition is called pit) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label