ﻻ يوجد ملخص باللغة العربية
We present a search for possible spin dependent interactions of the neutron with matter through exchange of spin 1 bosons with axial vector couplings as envisioned in possible extensions of the Standard Model. This was sought using a slow neutron polarimeter that passed transversely polarized slow neutrons by unpolarized slabs of material arranged so that this interaction would tilt the plane of polarization and develop a component along the neutron momentum. The result for the rotation angle, $phi_{V_5} = [2.8pm,4.6(stat.)pm,4.0(sys.)]times 10^{-5}~mbox{rad/m}$ is consistent with zero. This result improves the upper bounds on the neutron-matter coupling $g_{A}^{2}$ from such an interaction by about three orders of magnitude for force ranges in the mm-$mu$m regime.
We describe an experimental search for deviations from the inverse square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beamline. By measuring the neutron momentum transfer ($q$) depen
We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive non-cryogenic magnetic-field sensor. This approach studies the interactions between o
Unparticles as suggested by Georgi are identities that are not constrained by dispersion relations but are governed by their scaling dimension, d. Their coupling to particles can result in macroscopic interactions between matter, that are generally a
We investigate the sensitivities of searches for exotic spin-dependent interactions between the polarized nuclear spins of $^3$He and the particles of unpolarized or polarized solid-state masses using the frequency method and the resonance method. In
Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of $beta$-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the $beta$-neutron measurement, we also provide a f