ﻻ يوجد ملخص باللغة العربية
Quantum Darwinism posits that information becomes objective whenever multiple observers indirectly probe a quantum system by each measuring a fraction of the environment. It was recently shown that objectivity of observables emerges generically from the mathematical structure of quantum mechanics, whenever the system of interest has finite dimensions and the number of environment fragments is large [F. G. S. L. Brand~ao, M. Piani, and P. Horodecki, Nature Commun. 6, 7908 (2015)]. Despite the importance of this result, it necessarily excludes many practical systems of interest that are infinite-dimensional, including harmonic oscillators. Extending the study of Quantum Darwinism to infinite dimensions is a nontrivial task: we tackle it here by using a modified diamond norm, suitable to quantify the distinguishability of channels in infinite dimensions. We prove two theorems that bound the emergence of objectivity, first for finite energy systems, and then for systems that can only be prepared in states with an exponential energy cut-off. We show that the latter class of states includes any bounded-energy subset of single-mode Gaussian states.
We implement a dynamical resummation method (DRM) as an extension of the dynamical renormalization group to study the time evolution of infrared dressing in non-gauge theories. Super renormalizable and renormalizable models feature infrared divergenc
The relation between manifold topology, observables and gauge group is clarified on the basis of the classification of the representations of the algebra of observables associated to positions and displacements on the manifold. The guiding, physicall
The spectral problem for O(D) symmetric polynomial potentials allows for a partial algebraic solution after analytical continuation to negative even dimensions D. This fact is closely related to the disappearance of the factorial growth of large orde
The multiscale entanglement renormalization ansatz describes quantum many-body states by a hierarchical entanglement structure organized by length scale. Numerically, it has been demonstrated to capture critical lattice models and the data of the cor
Observable currents are locally defined gauge invariant conserved currents; physical observables may be calculated integrating them on appropriate hypersurfaces. Due to the conservation law the hypersurfaces become irrelevant up to homology, and the