ﻻ يوجد ملخص باللغة العربية
We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts (0.2<z<15) and stellar masses [Log10 M/Msun >6]. Our model follows observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of colors, sizes, star-formation and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, thousands of galaxies at z>6, and tens at z>10 at m_AB<30 (5-sigma) within the 236 arcmin^2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z>8, and resolve the current debate about the rate of evolution of galaxies at z>8. Ready to use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density f
Halo Occupation Distribution (HOD) is a model giving the average number of galaxies in a dark matter halo, function of its mass and other intrinsic properties, like distance from halo center, luminosity and redshift of its constituting galaxies. It i
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field d
Submillimetre-luminous galaxies at high-redshift are the most luminous, heavily star-forming galaxies in the Universe, and are characterised by prodigious emission in the far-infrared at 850 microns (S850 > 5 mJy). They reside in halos ~ 10^13Msun, h
We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z~1. We trace the extents