ترغب بنشر مسار تعليمي؟ اضغط هنا

Insisting on the role of experimental data: the pseudoscalar-pole piece to the $(g_mu-2)$ and the $|V_{ub}|$ from $B to pi ell u_{ell}$ differential branching ratio

77   0   0.0 ( 0 )
 نشر من قبل Pere Masjuan
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ a mathematical framework based on rational approximants in order to calculate meson form factors. The method profits from unitary, is systematic and data based, and is able to ascribe a systematic uncertainty which provides for the desired model independence. Two examples are discussed: the transition form factor entering the pseudoscalar-pole piece of the hadronic light-by-light contribution to the anomalous magnetic moment of the muon, and the $B to pi$ form factor participating the $Btopiell u_{ell}$ differential branching ratios which allows to determine the $|V_{ub}|$ CKM parameter.



قيم البحث

اقرأ أيضاً

We reassess the $Btopiell u_{ell}$ differential branching ratio distribution experimental data released by the BaBar and Belle Collaborations supplemented with all lattice calculations of the $Btopi$ form factor shape available up to date obtained by the HPQCD, FNAL/MILC and RBC/UKQCD Collaborations. Our study is based on the method of Pad{e} approximants, and includes a detailed scrutiny of each individual data set that allow us to obtain $|V_{ub}|=3.53(8)_{rm{stat}}(6)_{rm{syst}}times10^{-3}$. The semileptonic $B^{+}toeta^{(prime)}ell^{+} u_{ell}$ decays are also addressed and the $eta$-$eta^{prime}$ mixing discussed.
We employ the $Btopi$ form factors obtained from QCD light-cone sum rules and calculate the $Bto pi ell u_l$ width ($ell=e,mu$) in units of $1/|V_{ub}|^2$, integrated over the region of accessible momentum transfers, $0leq q^2leq 12.0 ~GeV^2$. Using the most recent BABAR-collaboration measurements we extract $|V_{ub}|=(3.50^{+0.38}_{-0.33}big|_{th.}pm 0.11 big|_{exp.})times 10^{-3}$. The sum rule results for the form factors, taken as an input for a $z$-series parameterization, yield the $q^2$-shape in the whole semileptonic region of $Bto piell u_ell$. We also present the charged lepton energy spectrum in this decay. Furthermore, the current situation with $Bto tau u_tau$ is discussed from the QCD point of view. We suggest to use the ratio of the $Bto pi tau u_tau$ and $Bto piell u_l ~(ell =mu,e) $ widths as an additional test of Standard Model. The sensitivity of this observable to new physics is illustrated by including a charged Higgs-boson contribution in the semileptonic decay amplitude.
The first measurements of differential branching fractions of inclusive semileptonic ${B to X_u , ell^+, u_{ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $Upsilon(4S)$ resonance and for $e ll = e, mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B to X_c , ell^+, u_{ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B to X_u , ell^+, u_{ell}}$ calculations.
The branching fractions of the decays $B^{+} to eta ell^{+} u_{ell}$ and $B^{+} to eta^{prime} ell^{+} u_{ell}$ are measured, where $ell$ is either an electron or a muon, using a data sample of $711,{rm fb}^{-1}$ containing $772 times 10^6 Bbar{B}$ pairs collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. To reduce the dependence of the result on the form factor model, the measurement is performed over the entire $q^2$ range. The resulting branching fractions are ${cal B}(B^{+} rightarrow eta ell^{+} u_{ell}) = (2.83 pm 0.55_{rm (stat.)} pm 0.34_{rm (syst.)}) times 10^{-5}$ and ${cal B}(B^{+} rightarrow eta ell^{+} u_{ell}) = (2.79 pm 1.29_{rm (stat.)} pm 0.30_{rm (syst.)}) times 10^{-5}$.
We calculate the $B topiell u$ and $B_s to K ell u$ form factors in dynamical lattice QCD. We use the (2+1)-flavor RBC-UKQCD gauge-field ensembles generated with the domain-wall fermion and Iwasaki gauge actions. For the $b$ quarks we use the anisotr opic clover action with a relativistic heavy-quark interpretation. We analyze two lattice spacings $a approx 0.11, 0.086$ fm and unitary pion masses as light as $M_pi approx 290$ MeV. We simultaneously extrapolate our numerical results to the physical light-quark masses and to the continuum and interpolate in the pion/kaon energy using SU(2) hard-pion chiral perturbation theory. We provide complete error budgets for the form factors $f_+(q^2)$ and $f_0(q^2)$ at three momenta that span the $q^2$ range accessible in our numerical simulations. We extrapolate these results to $q^2 = 0$ using a model-independent $z$-parametrization and present our final form factors as the $z$-coefficients and the matrix of correlations between them. Our results agree with other lattice determinations using staggered light quarks and provide important independent cross-checks. Both $B topiell u$ and $B_s to K ell u$ decays enable a determination of the CKM matrix element $|V_{ub}|$. To illustrate this, we perform a combined $z$-fit of our numerical $Btopiell u$ form-factor data with the experimental branching-fraction measurements leaving the relative normalization as a free parameter; we obtain $|V_{ub}| = 3.61(32) times 10^{-3}$, where the error includes statistical and systematic uncertainties. This approach can be applied to $B_sto K ell u$ decay to determine $|V_{ub}|$ once the process has been measured experimentally. Finally, in anticipation of future measurements, we make predictions for $B to piell u$ and $B_sto K ell u$ Standard-Model differential branching fractions and forward-backward asymmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا