ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the True Optical Gap in a High-Performance Organic Photovoltaic Polymer Using Single-Molecule Spectroscopy

87   0   0.0 ( 0 )
 نشر من قبل Jan Vogelsang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-gap conjugated polymers have enabled an impressive increase in the efficiencies of organic solar cells, primarily due to their red absorption which allows harvesting of that part of the solar spectrum. Here, we report that the true optical gap of one prototypical material, PTB7, is in fact at significantly higher energy than has previously been reported, indicating that the red absorption utilized in these materials in solar cells is entirely due to chain aggregation. Using single-molecule spectroscopy we find that PL from isolated nanoscale aggregates consists of multiple independently emitting chromophores. At the single-molecule level, however, straight single chains with a high degree of emission polarization are observed. The PL is found to be ~0.4 eV higher in energy, with a longer lifetime than the red aggregates, and is attributed to single chromophores. Our findings indicate that the impressive light-harvesting abilities of PTB7 in the red spectral region arises solely from chain aggregation.

قيم البحث

اقرأ أيضاً

Single molecule spectroscopy aims at unveiling often hidden but potentially very important contributions of single entities to a systems ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes the fundamental question of temporal evolution, or change, has thus far been inaccessible, resulting in a static picture of a dynamic world. Here, we finally resolve this dilemma by performing the first ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature we reveal their non-linear ultrafast response in an effective 3-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse-pair, providing spectral encoding with 25 fs temporal resolution. This experimental realisation of true single molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally in reach.
Hypericin can be found in nature in Hypericum perforatum (St. Johns Wort) and has become subject of intense biochemical research. Studies report of antidepressive, antineoplastic, antitumor and antiviral activity of hypericin. Among the variety of po tential applications hypericin can be used as photosensitizer in photodynamic therapy (PDT), where it is brought into cancer cells and produces singlet oxygen upon irradiation with a suitable light source. Therefore, the photophysical properties of hypericin are crucial for a successful application in a medical treatment. Here, we present the first single molecule optical spectroscopy study of hypericin. Its photostability is large enough to obtain single molecule fluorescence, surface enhanced Raman spectra (SERS), fluorescence lifetime, antibunching and blinking dynamics. Embedding hypericin in a PVA matrix changes the blinking dynamics, reduces the fluorescence lifetime and increases the photostability. Single molecule SERS spectra show both the neutral and deprotonated form of hypericin and exhibit sudden spectral changes, which can be associated with a reorientation of the single molecule with respect to the surface.
72 - Dongjun Xie , Tao Liu , Wei Gao 2017
In this article, we designed and synthesized a novel small molecule acceptor of ITCPTC with thiophene-fused ending group by employing a new active methylene precursor of CPTCN. The ITCPTC based polymer solar cells with PBT1-EH as donor achieved very high PCEs of up to 11.8% with a remarkably enhanced fill factor (FF) of 0.751, a near 20% boost in PCE with respect to the ITIC based control device. These values are among the highest PCEs and FFs for PSCs. In the whole study, we made contrasts with ITIC to understand the reasons of excellent performance of ITCPTC-based PSCs through various measurements, such as GIWAXS and RSoXS. We revealed that the simple modification of ITIC into ITCPTC not only change the material electronic structure, but also mediate the material interactions and crystallization, which contribute together to the excellent performance of ITCPTC based PSCs.
Nanomagnetometry using the nitrogen-vacancy (NV) centre in diamond has attracted a great deal of interest because of the combined features of room temperature operation, nanoscale resolution and high sensitivity. One of the important goals for nano-m agnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis shows how a single molecule at the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV centre on a time scale of order seconds with nanometer precision. We perform spatio-temporal resolution optimisation and also outline paths to greater sensitivity. In addition, the method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.
Observing changes in molecular structure requires atomic-scale {AA}ngstrom and femtosecond spatio-temporal resolution. We use the Fourier transform (FT) variant of laser-induced electron diffraction (LIED), FT-LIED, to directly retrieve the molecular structure of ${rm H_2O^+}$ with picometre and femtosecond resolution without a priori knowledge of the molecular structure nor the use of retrieval algorithms or ab initio calculations. We identify a symmetrically stretched ${rm H_2O^+}$ field-dressed structure that is most likely in the ground electronic state. We subsequently study the nuclear response of an isolated water molecule to an external laser field at four different field strengths. We show that upon increasing the laser field strength from 2.5 to 3.8 V/{AA}, the O-H bond is further stretched and the molecule slightly bends. The observed ultrafast structural changes lead to an increase in the dipole moment of water and, in turn, a stronger dipole interaction between the nuclear framework of the molecule and the intense laser field. Our results provide important insights into the coupling of the nuclear framework to a laser field as the molecular geometry of ${rm H_2O^+}$ is altered in the presence of an external field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا