ﻻ يوجد ملخص باللغة العربية
We explore the growth of large-scale magnetic fields in a shear flow, due to helicity fluctuations with a finite correlation time, through a study of the Kraichnan-Moffatt model of zero-mean stochastic fluctuations of the $alpha$ parameter of dynamo theory. We derive a linear integro-differential equation for the evolution of large-scale magnetic field, using the first-order smoothing approximation and the Galilean invariance of the $alpha$-statistics. This enables construction of a model that is non-perturbative in the shearing rate $S$ and the $alpha$-correlation time $tau_alpha$. After a brief review of the salient features of the exactly solvable white-noise limit, we consider the case of small but non-zero $tau_alpha$. When the large-scale magnetic field varies slowly, the evolution is governed by a partial differential equation. We present modal solutions and conditions for the exponential growth rate of the large-scale magnetic field, whose drivers are the Kraichnan diffusivity, Moffatt drift, Shear and a non-zero correlation time. Of particular interest is dynamo action when the $alpha$-fluctuations are weak; i.e. when the Kraichnan diffusivity is positive. We show that in the absence of Moffatt drift, shear does not give rise to growing solutions. But shear and Moffatt drift acting together can drive large scale dynamo action with growth rate $gamma propto |S|$.
A rigorous theory for the generation of a large-scale magnetic field by random non-helically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low Rm and weak shear. The dynamo is ki
We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall current
A convenient representation of the structure of the large-scale galactic magnetic field is required for the interpretation of polarization data in the sub-mm and radio ranges, in both the Milky Way and external galaxies. We develop a simple and flexi
We investigate the generation of large scale magnetic fields in the universe from quantum fluctuations produced in the inflationary stage. By coupling these quantum fluctuations to the dilaton field and Ricci scalar, we show that the magnetic fields
Observations of dwarf galaxies suggest the presence of large-scale magnetic fields. However the size and slow rotation of these galaxies appear insufficient to support a mean-field dynamo action to excite such fields. Here we suggest a new mechanism