ﻻ يوجد ملخص باللغة العربية
We present the properties of the recently discovered class of variable stars, Blue Large-Amplitude Pulsators (BLAPs). These extremely rare, short-period pulsating objects were detected thanks to regular, high-cadence observations of hundreds of millions of Milky Way stars by the OGLE variability survey. The new variables closely resemble classical pulsators, Cepheids, and RR Lyrae-type stars, but at effective temperatures at which pulsations are due to the presence of iron-group elements. Theory shows that BLAPs are evolved low-mass stars with a giant-like structure, but their origin remains a mystery. In this contribution, we report the negative result of a search for BLAPs in the whole Magellanic System.
Blue Large-Amplitude Pulsators (BLAPs) are a recently discovered class of pulsating star, believed to be proto-white dwarfs, produced by mass stripping of a red giant when it has a small helium core. An outstanding question is why the stars in this c
The single degenerate (SD) model, one of the leading models for the progenitors of Type Ia supernovae (SNe Ia), predicts that there should be binary companions that survive the supernova explosion which, in principle, should be detectable in the Gala
Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the com
Blue Large Amplitude Pulsators (BLAPs) are blue stars showing high amplitude (>0.2 mag) pulsations on a timescale of a few tens of mins. They form a new class of variable star recently discovered using OGLE data. It has lead to a number of investigat
Following the discovery of blue large-amplitude pulsators (BLAPs), single star evolu- tion models of post red giant branch stars that have undergone a common envelope (CE) ejection in the form of a high mass loss rate have been constructed and analys