ﻻ يوجد ملخص باللغة العربية
Weyl semimetals are gapless topological states of matter with broken inversion and/or time reversal symmetry, which can support unconventional responses to externally applied electrical, optical and magnetic fields. Here we report a new photogalvanic effect in type-II WSMs, MoTe2 and Mo0.9W0.1Te2, which are observed to support a circulating photocurrent when illuminated by circularly polarized light at normal incidence. This effect occurs exclusively in the inversion broken phase, where crucially we find that it is associated with a spatially varying beam profile via a new dispersive contribution to the circular photogalvanic effect (s-CPGE). The response functions derived for s-CPGE reveal the microscopic mechanism of this photocurrent, which are controlled by terms that are allowed in the absence of inversion symmetry, along with asymmetric carrier excitation and relaxation. By evaluating this response for a minimal model of a Weyl semimetal, we obtain the frequency dependent scaling behavior of this form of photocurrent. These results demonstrate opportunities for controlling photoresponse by patterning optical fields to store, manipulate and transmit information over a wide spectral range.
The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall effect (QAHE) and topologically protected chiral edge states which can carry dissipationless current. The
So far, the circular photogalvanic effect (CPGE) is the only possible quantized signal in Weyl semimetals. With inversion and mirror symmetries broken, Weyl and multifold fermions in band structures with opposite chiralities can stay at different ene
A developing frontier in condensed matter physics is the emergence of novel electromagnetic responses, such as topological and anomalous Hall effect (AHE), in ferromagnetic Weyl semimetals (FM-WSMs). Candidates of FM-WSM are limited to materials that
Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously.
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or t