ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially dispersive circular photogalvanic effect in a Weyl semimetal

92   0   0.0 ( 0 )
 نشر من قبل Zhurun Ji
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weyl semimetals are gapless topological states of matter with broken inversion and/or time reversal symmetry, which can support unconventional responses to externally applied electrical, optical and magnetic fields. Here we report a new photogalvanic effect in type-II WSMs, MoTe2 and Mo0.9W0.1Te2, which are observed to support a circulating photocurrent when illuminated by circularly polarized light at normal incidence. This effect occurs exclusively in the inversion broken phase, where crucially we find that it is associated with a spatially varying beam profile via a new dispersive contribution to the circular photogalvanic effect (s-CPGE). The response functions derived for s-CPGE reveal the microscopic mechanism of this photocurrent, which are controlled by terms that are allowed in the absence of inversion symmetry, along with asymmetric carrier excitation and relaxation. By evaluating this response for a minimal model of a Weyl semimetal, we obtain the frequency dependent scaling behavior of this form of photocurrent. These results demonstrate opportunities for controlling photoresponse by patterning optical fields to store, manipulate and transmit information over a wide spectral range.



قيم البحث

اقرأ أيضاً

The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall effect (QAHE) and topologically protected chiral edge states which can carry dissipationless current. The realization of the QAHE state has however been challenging because of the complex heterostructures and sub-Kelvin temperatures required. Time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust QAHE edge states. In this work we present a combined scanning tunneling spectroscopy and theoretical investigation of a newly discovered magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that chiral edge states can be localized on partially exposed Kagome planes on the surface of a Weyl semimetal. Correspondingly, our STM dI/dV maps on narrow kagome Co3Sn terraces show linearly dispersing quantum well like states, which can be attributed to hybridized chiral edge modes. Our experiment and theory results suggest a new paradigm for studying chiral edge modes in time-reversal breaking Weyl semimetals. More importantly, this work leads a practical route for realizing higher temperature QAHE.
So far, the circular photogalvanic effect (CPGE) is the only possible quantized signal in Weyl semimetals. With inversion and mirror symmetries broken, Weyl and multifold fermions in band structures with opposite chiralities can stay at different ene rgies and generate a net topological charge. Such kind of net topological charge can present as a quantized signal in the circular polarized light induced injection current. According to current theoretical understanding, RhSi and its counterparts are believed to be the most promising candidate for the experimental observation of the quantized CPGE. However, the real quantized signal was not experimentally observed to date. Since all the previous theoretical studies for the quantized CPGE were based on effective model but not realistic band structures, it should lose some crucial details that influence the quantized signal. The current status motives us to perform a realistic ab-initio study for the CPGE. Our result shows that the quantized value is very easy to be interfered by trivial bands related optic transitions, and an fine tuning of the chemical potential by doping is essential for the observation of quantized CPGE. This work performs the first ab-initio analysis for the quantized CPGE based on realistic electronic band structure and provides an effective way to solve the current problem for given materials.
A developing frontier in condensed matter physics is the emergence of novel electromagnetic responses, such as topological and anomalous Hall effect (AHE), in ferromagnetic Weyl semimetals (FM-WSMs). Candidates of FM-WSM are limited to materials that preserve inversion symmetry and generate Weyl crossings by breaking time-reversal symmetry. These materials share three common features: a centrosymmetric lattice, a collinear FM ordering, and a large AHE observed when the field is parallel to the magnetic easy-axis. Here, we present CeAlSi as a new type of FM-WSM, where the Weyl nodes are stabilized by breaking inversion symmetry, but their positions are tuned by breaking time-reversal symmetry. Unlike the other FM-WSMs, CeAlSi has a noncentrosymmetric lattice, a noncollinear FM ordering, and a novel AHE that is anisotropic between the easy- and hard-axes. It also exhibits large FM domains that are promising for both device applications and an interplay between the Weyl nodes and FM domain walls.
Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.
105 - D. F. Liu , Q. N. Xu , E. K. Liu 2021
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or t ime reversal symmetry) must be broken, leading to a topological phase transition (TPT). Despite the great importance in understanding the formation of TWSs and their unusual properties, direct observation of such a TPT has been challenging. Here, using a recently discovered magnetic TWS Co3Sn2S2, we were able to systematically study its TPT with detailed temperature dependence of the electronic structures by angle-resolved photoemission spectroscopy. The TPT with drastic band structures evolution was clearly observed across the Curie temperature (TC = 177 K), including the disappearance of the characteristic SFAs and the recombination of the spin-split bands that leads to the annihilation of Weyl points with opposite chirality. These results not only reveal important insights on the interplay between the magnetism and band topology in TWSs, but also provide a new method to control their exotic physical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا