ﻻ يوجد ملخص باللغة العربية
We report the results of a neutrino search in Super-Kamiokande for coincident signals with the first detected gravitational wave produced by a binary neutron star merger, GW170817, which was followed by a short gamma-ray burst, GRB170817A, and a kilonova/macronova. We searched for coincident neutrino events in the range from 3.5 MeV to $sim$100 PeV, in a time window $pm$500 seconds around the gravitational wave detection time, as well as during a 14-day period after the detection. No significant neutrino signal was observed for either time window. We calculated 90% confidence level upper limits on the neutrino fluence for GW170817. From the upward-going-muon events in the energy region above 1.6 GeV, the neutrino fluence limit is $16.0^{+0.7}_{-0.6}$ ($21.3^{+1.1}_{-0.8}$) cm$^{-2}$ for muon neutrinos (muon antineutrinos), with an error range of $pm5^{circ}$ around the zenith angle of NGC4993, and the energy spectrum is under the assumption of an index of $-2$. The fluence limit for neutrino energies less than 100 MeV, for which the emission mechanism would be different than for higher-energy neutrinos, is also calculated. It is $6.6 times 10^7$ cm$^{-2}$ for anti-electron neutrinos under the assumption of a Fermi-Dirac spectrum with average energy of 20 MeV.
We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected gravitational wave events, GW150914 and GW151226, using a neutrino energy range from 3.5 MeV to 100 PeV. We searched for coincident neutri
A search for neutrinos produced in coincidence with Gamma-Ray Bursts(GRB) was conducted with the Super-Kamiokande (SK) detector. Between December 2008 and March 2017, the Gamma-ray Coordinates Network recorded 2208 GRBs that occurred during normal SK
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monit
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remn
We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrino from the same location by the IceC