ﻻ يوجد ملخص باللغة العربية
The measurement of the triple Higgs coupling is a key benchmark for the LHC and future colliders. It directly probes the Higgs potential and its fundamental properties in connection to new physics beyond the Standard Model. There exist two phase space regions with an enhanced sensitivity to the Higgs self-coupling, the Higgs pair production threshold and an intermediate top pair threshold. We show how the invariant mass distribution of the Higgs pair offers a systematic way to extract the Higgs self-coupling, focusing on the leading channel $ppto hh+Xto bbar b gammagamma+X$. We utilize new features of the signal events at higher energies and estimate the potential of a high-energy upgrade of the LHC and a future hadron collider with realistic simulations. We find that the high-energy upgrade of the LHC to 27 TeV would reach a 5$sigma$ observation with an integrated luminosity of 2.5 ab$^{-1}$. It would have the potential to reach 15% (30%) accuracy at the 68% (95%) confidence level to determine the SM Higgs boson self-coupling. A future 100 TeV collider could improve the self-coupling measurement to better than 5% (10%) at the 68% (95%) confidence level.
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the Minimal Supersymmetric Standard Model. We present analytical expressions for the relevant amplitudes, including both quark and squar
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leadi
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass sch
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the
We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. We perform a detailed signal and background analysis, working out efficient kinema