ﻻ يوجد ملخص باللغة العربية
We develop a methodology to optimise the measurement of Baryon Acoustic Oscillation (BAO) from a given galaxy sample. In our previous work, we demonstrated that one can measure BAO from tracers in under-dense regions (voids). In this study, we combine the over-dense and under-dense tracers (galaxies & voids) to obtain better constraints on the BAO scale. To this end, we modify the de-wiggled BAO model with an additional parameter to describe both the BAO peak and the underlying exclusion pattern of void 2PCFs. We show that after applying BAO reconstruction to galaxies, the BAO peak scale of both galaxies and voids are unbiased using the modified model. Furthermore, we use a new 2PCF estimator for a multi-tracer analysis with galaxies and voids. In simulations, the joint sample improves by about 10% the constraint for the post-reconstruction BAO peak position compared to the result from galaxies alone, which is equivalent to an enlargement of the survey volume by 20%. Applying this method to the BOSS DR12 data, we have an 18% improvement for the low-z sample (0.2<z<0.5), but a worse constraint for the high-z sample (0.5<z<0.75), which is consistent with statistical fluctuations for the current survey volume. Future larger samples will give more robust improvements due to less statistical fluctuations.
In the context of the study of large-scale structure of the Universe, we analyze the response of cosmic void clustering to selection effects, such as angular incompleteness due to observational systematics and radial selection functions. We find for
We present a void clustering analysis in configuration-space using the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous Red Galaxies (LRG) combine
We study the statistics of various large-scale structure tracers in gravity-only cosmological simulations including baryons and cold dark matter (CDM) initialized with two different transfer functions, and simulated as two distinct fluids. This allow
Baryon Acoustic Oscillations are considered to be a very robust standard ruler against various systematics. This premise has been tested against observational systematics, but not to the level required for the next generation of galaxy surveys such a
We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: firstly using the full shape of the 2D correlation function