ﻻ يوجد ملخص باللغة العربية
The Intermediate Palomar Transient Factory reported the discovery of an unusual type II-P supernova iPTF14hls. Instead of a ~100-day plateau as observed for ordinary type II-P supernovae, the light curve of iPTF14hls has at least five distinct peaks, followed by a steep decline at ~1000 days since discovery. Until 500 days since discovery, the effective temperature of iPTF14hls is roughly constant at 5000-6000K . In this paper we propose that iPTF14hls is likely powered by intermittent fallback accretion. It is found that the light curve of iPTF14hls can be well fit by the usual t^{-5/3} accretion law until ~1000 days post discovery when the light curve transitions to a steep decline. To account for this steep decline, we suggest a power-law density profile for the late accreted material, rather than the constant profile as appropriated for the t^{-5/3} accretion law. Detailed modeling indicates that the total fallback mass is ~0.2M_{sun}, with an ejecta mass M_{ej}~21M_{sun}. We find the third peak of the light curve cannot be well fit by the fallback model, indicating that there could be some extra rapid energy injection. We suggest that this extra energy injection may be a result of a magnetic outburst if the central object is a neutron star. These results indicate that the progenitor of iPTF14hls could be a massive red supergiant.
We study iPTF14hls, a luminous and extraordinary long-lived Type II supernova, which lately has attracted much attention and disparate interpretation. We present new optical photometry that extends the light curves until more than 3 yr past discovery
A new component was reported in the X-ray counterpart to the binary neutron-star merger and gravitational wave event GW170817, exceeding the afterglow emission from an off-axis structured jet. The afterglow emission from the kilonova/macronova ejecta
We present high-cadence ultraviolet (UV), optical, and near-infrared (NIR) data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission l
We present extensive observations of SN 2018zd covering the first $sim450$,d after the explosion. This SN shows a possible shock-breakout signal $sim3.6$,hr after the explosion in the unfiltered light curve, and prominent flash-ionisation spectral fe
It is shown that the H$alpha$ luminosity and the Thomson optical depth of the iPTF14hls on day 600 after the detection provide us with the estimate of the envelope age which turns to be about 1000 days. I propose a model that suggests an explosion of