ترغب بنشر مسار تعليمي؟ اضغط هنا

Signal Processing for High Throughput Satellite Systems: Challenges in New Interference-Limited Scenarios

230   0   0.0 ( 0 )
 نشر من قبل Miguel \\'Angel V\\'azquez
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The field of satellite communications is enjoying a renewed interest in the global telecom market, and very high throughput satellites (V/HTS), with their multiple spot-beams, are key for delivering the future rate demands. In this article, the state-of-the-art and open research challenges of signal processing techniques for V/HTS systems are presented for the first time, with focus on novel approaches for efficient interference mitigation. The main signal processing topics for the ground, satellite, and user segment are addressed. Also, the critical components for the integration of satellite and terrestrial networks are studied, such as cognitive satellite systems and satellite-terrestrial backhaul for caching. All the reviewed techniques are essential in empowering satellite systems to support the increasing demands of the upcoming generation of communication networks.

قيم البحث

اقرأ أيضاً

Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this paper, we c onsider a high throughput satellite (HTS) system that employs BH in conjunction with precoding. In particular, we propose the concept of Cluster-Hopping (CH) that seamlessly combines the BH and precoding paradigms and utilize their individual competencies. The cluster is defined as a set of adjacent beams that are simultaneously illuminated. In addition, we propose an efficient time-space illumination pattern design, where we determine the set of clusters that can be illuminated simultaneously at each hopping event along with the illumination duration. We model the CH time-space illumination pattern design as an integer programming problem which can be efficiently solved. Supporting results based on numerical simulations are provided which validate the effectiveness of the proposed CH concept and time-space illumination pattern design.
Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the demand for data-hungry applications has drawn large attention from different wireless network communities. Given the benefits of CA in the terrestrial wireless environment, it is of great interest to analyze and evaluate the potential impact of CA in the satellite domain. In this paper, we study CA in multibeam high throughput satellite systems. We consider both inter-transponder and intra-transponder CA at the satellite payload level of the communication stack, and we address the problem of carrier-user assignment assuming that multiple users can be multiplexed in each carrier. The transmission parameters of different carriers are generated considering the transmission characteristics of carriers in different transponders. In particular, we propose a flexible carrier allocation approach for a CA-enabled multibeam satellite system targeting a proportionally fair user demand satisfaction. Simulation results and analysis shed some light on this rather unexplored scenario and demonstrate the feasibility of the CA in satellite communication systems.
We consider a downlink cellular network where multi-antenna base stations (BSs) transmit data to single-antenna users by using one of two linear precoding methods with limited feedback: (i) maximum ratio transmission (MRT) for serving a single user o r (ii) zero forcing (ZF) for serving multiple users. The BS and user locations are drawn from a Poisson point process, allowing expressions for the signal- to-interference coverage probability and the ergodic spectral efficiency to be derived as a function of system parameters such as the number of BS antennas and feedback bits, and the pathloss exponent. We find a tight lower bound on the optimum number of feedback bits to maximize the net spectral efficiency, which captures the overall system gain by considering both of downlink and uplink spectral efficiency using limited feedback. Our main finding is that, when using MRT, the optimum number of feedback bits scales linearly with the number of antennas, and logarithmically with the channel coherence time. When using ZF, the feedback scales in the same ways as MRT, but also linearly with the pathloss exponent. The derived results provide system-level insights into the preferred channel codebook size by averaging the effects of short-term fading and long-term pathloss.
87 - Huimei Han , Xudong Guo , Ying Li 2016
A new scheme to resolve the intra-cell pilot collision for M2M communication in crowded massive multiple-input multiple-output (MIMO) systems is proposed. The proposed scheme permits those failed user equipments (UEs), judged by a strongest-user coll ision resolution (SUCR) protocol, to contend for the idle pilots, i.e., the pilots that are not selected by any UE in the initial step. This scheme is called as SUCR combined idle pilots access (SUCR-IPA). To analyze the performance of the SUCR-IPA scheme, we develop a simple method to compute the access success probability of the UEs in each random access slot (RAST). The simulation results coincide well with the analysis. It is also shown that, compared to the SUCR protocol, the proposed SUCR-IPA scheme increases the throughput of the system significantly, and thus decreases the number of access attempts dramatically.
Probabilistic amplitude shaping (PAS) can flexibly vary the spectral efficiency (SE) of fiber-optic systems. In this paper, we demonstrate the application of PAS to bit-wise hard decision decoding (HDD) of product codes (PCs) by finding the necessary conditions to select the PC component codes. We show that PAS with PCs and HDD yields gains up to $2.7$ dB and SE improvement up to approximately $1$ bit/channel use compared to using PCs with uniform signaling and HDD. Furthermore, we employ the recently introduced iterative bounded distance decoding with combined reliability of PCs to improve performance of PAS with PCs and HDD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا